K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2020

Bài làm:

#Tìm Max của biểu thức:

\(A=\frac{3-4x}{x^2+1}=\frac{4\left(x^2+1\right)-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\)

Mà \(\hept{\begin{cases}\left(2x+1\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)\Rightarrow}-\frac{\left(2x+1\right)^2}{x^2+1}\le0\left(\forall x\right)\)

\(\Rightarrow A\le4\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)

Vậy \(Max\left(A\right)=4\Leftrightarrow x=-\frac{1}{2}\)

#Tìm Max và Min của B:

Tìm Min

\(B=\frac{2x}{x^2+1}=\frac{\left(x^2+2x+1\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+1\right)^2}{x^2+1}-1\)

Mà \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)\Rightarrow}\frac{\left(x+1\right)^2}{x^2+1}\ge0\left(\forall x\right)\)

\(\Rightarrow B\ge-1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x+1\right)^2\ge0\Rightarrow x=-1\)

Vậy \(Min\left(B\right)=-1\Leftrightarrow x=-1\)

Tìm Max

\(B=\frac{2x}{x^2+1}=\frac{x^2+1-\left(x^2-2x+1\right)}{x^2+1}=1-\frac{\left(x-1\right)^2}{x^2+1}\)

Mà \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\x^2+1>0\end{cases}}\left(\forall x\right)\Rightarrow-\frac{\left(x-1\right)^2}{x^2+1}\le0\left(\forall x\right)\)

\(\Rightarrow B\le1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy \(Max\left(B\right)=1\Leftrightarrow x=1\)

Sao dạo này nhìu bạn đăng mấy câu như vậy lên thế nhỉ?

NV
18 tháng 7 2021

\(A=\dfrac{3\left(x^2+x+1\right)-2x^2-4x-2}{x^2+x+1}=3-\dfrac{2\left(x+1\right)^2}{x^2+x+1}\le3\)

\(A_{max}=3\) khi \(x=-1\)

\(A=\dfrac{3x^2-3x+3}{3\left(x^2+x+1\right)}=\dfrac{x^2+x+1+2x^2-4x+2}{3\left(x^2+x+1\right)}=\dfrac{1}{3}+\dfrac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge\dfrac{1}{3}\)

\(A_{min}=\dfrac{1}{3}\) khi \(x=-1\)

a: \(P=\dfrac{2x^2-1}{x^2+x}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\)

\(=\dfrac{2x^2-1-x^2+1+3x}{x\left(x+1\right)}=\dfrac{x^2+3x}{x\left(x+1\right)}=\dfrac{x+3}{x+1}\)

\(Q=\dfrac{1}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x+1}=\dfrac{1}{\left(x-3\right)\left(x+1\right)}=\dfrac{1}{x^2-2x+1-4}=\dfrac{1}{\left(x-1\right)^2-4}< =-\dfrac{1}{4}\)

Dấu = xảy ra khi x=1

22 tháng 4 2018

Câu đó chắc bạn chép thiếu đề bài chứ mình nghĩ đề là : (x2 + x+1)(x2 -x +1)

22 tháng 4 2018

A=(x2+1)2 - x2 (hằng đẳng thức)

A=x4 + 2x2 +1 -x2

A=x4 + x2 +1

Vì x4 luôn lớn hơn hoặc bằng 0 với mọi x

VÌ x2 luôn lớn hơn hoặc bằng 0 với mọi x

=> x4 + x2 + 1 luôn lớn hơn hoặc bằng 1 với mọi x

Dấu bằng xảy ra khi

x4 =0            x2 =0

=>x=0

Vậy giá trị lớn nhất của A là 1 với x=0

14 tháng 8 2018

a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2

Vậy MinA=2 \(\Leftrightarrow\)x=2

b) B= -(x-1)2-(2y+1)2+7 \(\le\)7

Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)

Vậy MaxB=7 ....

14 tháng 8 2018

cảm ơn bạn nha

1 tháng 12 2018

a, ĐK: \(\hept{\begin{cases}x+2\ne0\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x\ne-2\\x\ne0\end{cases}}\)

b, \(B=\left(1-\frac{x^2}{x+2}\right).\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)

\(=\frac{-x^2+x+2}{x+2}.\frac{\left(x+2\right)^2}{x}-\frac{x^2+6x+4}{x}\)

\(=\frac{\left(-x^2+x+2\right)\left(x+2\right)-\left(x^2+6x+4\right)}{x}\)

\(=\frac{-x^3-2x^2+x^2+2x+2x+4-\left(x^2+6x+4\right)}{x}\)

\(=\frac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)

c, x = -3 thỏa mãn ĐKXĐ của B nên với x = -3 thì 

\(B=-\left(-3\right)^2-2.\left(-3\right)-2=-9+6-2=-5\)

d, \(B=-x^2-2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\le-1\forall x\)

Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)

Vậy GTLN của B là - 1 khi x = -1

2 tháng 12 2018

Thanks bạn ;)