Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=-3x^2-4x\sqrt{y}+16x-2y+12\sqrt{y}+1998\)
\(\Leftrightarrow3P=-9x^2-12x\sqrt{y}-4y+16\left(3x+2\sqrt{y}\right)-64-\left(2y-4\sqrt{y}+2\right)+6060\)
\(=-\left(3y+2\sqrt{y}-8\right)^2-2\left(\sqrt{y}-1\right)^2+6060\le6060\)
=> P \(\le2020\)
"=" khi \(\left\{{}\begin{matrix}3x+2\sqrt{y}=8\\\sqrt{y}-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy Min P = 2020 khi x = 2 ; y = 1
Ta có A = 5x2 - 2xy + 2y2 - 4x + 2y + 3
=> 2A = 10x2 - 4xy + 4y2 - 8x + 4y + 6
= (x2 - 4xy + 4y2) - 2(x - 2y) + 1 + 9x2 - 6x + 1 + 4
= \(\left(x-2y\right)^2-2\left(x-2y\right)+1+9\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)+4\)
\(=\left(x-2y-1\right)^2+9\left(x-\frac{1}{3}\right)^2+4\)\(\ge4\)
=> A \(\ge\)2
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2y-=0\\x-\frac{1}{3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2y=1\\x=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{3}\\x=\frac{1}{3}\end{cases}}\)
Vậy khi x = 1/3 ; y = -1/3 thì A đạt GTNN
\(A=5x^2+2y^2-2xy-4x+2y\)\(+3\)
\(=\left(x^2-2xy+y^2\right)+\)\(\left(4x^2-4x+1\right)+\)\(\left(y^2+2y+1\right)+1\)
\(Tacó\)
\(P=x^{2}+y^{2}+\frac{1}{(4-\frac{1}{x}-\frac{1}{y})^{2}}\geq x^{2}+1+\frac{1}{(3-\frac{1}{x})^{2}}=x^{2}+1+\frac{x^{2}}{(3x-1)^{2}}\) ( do \(y\geq 1)\)
\(x> \frac{1}{3}=>3x-1> 0 \)
Áp dụng bất đẳng thức Cô-si cho 2 số dương:
\(x^{2}+\frac{x^{2}}{4(3x-1)^{2}}\geq 2\sqrt{x^{2}.\frac{x^{2}}{4(3x-1)^{2}}}=\frac{x^{2}}{3x-1}\)
Ta cm: \(\frac{x^{2}}{3x-1}\geq \frac{1}{2}<=>2x^{2}\geq 3x-1<=>(x-1)(2x-1)\geq 0\) đúng do \(\frac{1}{3}< x\leq \frac{1}{2}\)
\(1+\frac{3x^{2}}{4(3x-1)^{2}}=\frac{1}{4}+\frac{3}{4}(1+\frac{x^{2}}{(3x-1)^{2}})\geq \frac{1}{4}+\frac{3}{4}.2.\frac{x}{3x-1}\geq \frac{1}{4}+\frac{3}{4}.2=\frac{7}{4}\)
Do \(\frac{x}{3x-1}=\frac{1}{3}.\frac{3x}{3x-1}=\frac{1}{3}(1+\frac{1}{3x-1})\geq \frac{1}{3}(1+\frac{1}{\frac{3}{2}-1})=1\)
\(<=>y=1,x=\frac{1}{2}\)
Phù ~ THỞ PHÀO NHẸ NHÕM
có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)
có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)
từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)
=>Min A=(1+\(\sqrt{2}\))^2
\(A=-\left(4x^2-4xy+y^2\right)-\left(y^2-2y+1\right)+4\)
\(A=4-\left(2x-y\right)^2-\left(y-1\right)^2\le4\)
\(A_{max}=4\) khi \(\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)
Chúc bạn học tốt !!!
\(-4x^2+4xy-2y^2+2y+3\)
\(=-\left(4x^2+4xy+y^2\right)-\left(y^2-2y+1\right)+4\)
\(=-\left(2x+y\right)^2-\left(y-1\right)^2+4\)
Ta có \(\left(2x+y\right)^2\ge0\) \(\forall x,y\) \(;\left(y-1\right)^2\ge0\) \(\forall y\)
=> \(\left(2x+y\right)^2+\left(y-1\right)^2\ge0\) \(\forall x,y\)
=> \(-\left(2x+y\right)^2-\left(y-1\right)^2\le0\) \(\forall x,y\)
=> \(-\left(2x+y\right)-\left(y-1\right)^2+4\le4\) \(\forall x,y\)
\(MaxA=4\Leftrightarrow\hept{\begin{cases}\left(y-1\right)^2=0\\\left(2x+y\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}y-1=0\\2x+y=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=1\\x=-\frac{1}{2}\end{cases}}}\)