Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : A=\(-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}\right)\)
A=\(-\left(x-\frac{1}{2}\right)^2-\frac{1}{4}< \)hoặc bằng -1/4 Vậy A max =1/4 khi x=1/2
Bài 1:
\(A=x^2+6x+9+x^2-10x+25\)
\(=2x^2+4x+34\)
\(=2\left(x^2+2x+17\right)\)
\(=2\left(x+1\right)^2+32>=32\forall x\)
Dấu '=' xảy ra khi x=-1
a/ x2 + x - 1 = x2 + 2 . 0,5x + 0,52 - 1,25 = (x + 0,5)2 -1,25 \(\ge\)-1,25
Đẳng thức xayra khi: x + 0,5 = 0 => x = -0,5
Vậy giá trị nhỏ nhất của x2 + x - 1 là -1,25 khi x = -0,5
b/ Đặt A = 2x2 + 4x + 3 => 2A = 4x2 + 8x + 6 = (2x)2 + 2 . 2 . 2x + 22 + 2 = (2x + 2)2 + 2 \(\ge\)2 => A \(\ge\)1
Đẳng thức xảy ra khi: 2x + 2 = 0 => x = -1
Vậy giá trị nhỏ nhất của 2x2 + 4x + 3 là 1 khi x = -1
Đặt \(x+2=t\ne0\Rightarrow x+1=t-1\)
\(A=\dfrac{x+1}{\left(x+2\right)^2}=\dfrac{t-1}{t^2}=-\dfrac{1}{t^2}+\dfrac{1}{t}=-\left(\dfrac{1}{t}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(A_{max}=\dfrac{1}{4}\) khi \(t=2\) hay \(x=0\)
\(B=2x^2-6x+7\)
\(=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}+7\)
\(=2\left(x-\frac{3}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
Vậy \(MinB=\frac{5}{2}\Leftrightarrow x=\frac{3}{2}\)
\(C=\left(2x-5\right)^2-4\left(2x-5\right)\)
\(=\left(2x-5\right)\left(2x-5-4\right)=2x-5\)
\(=[\left(2x-5\right)^2-4\left(2x-5\right)+4]-4\)
\(=\left(2x-5-2\right)^2-4\)
\(=\left(2x-7\right)^2-4\ge-4\)
Vậy \(MinC=-4\Leftrightarrow x=\frac{7}{2}\)
ĐKXĐ x khác 1
x2/(x-1) = (x^2+x-1-x)/(x-1)=1+(x^2-x)/(x-1)= 1+x
vì x>1 nên để P nhỏ nhất thì x=2 khi đó min P = 3
\(P=\frac{x^2-1}{x-1}+\frac{1}{x-1}\)
\(P=x+1+\frac{1}{x-1}\)
\(P=x-1+\frac{1}{x-1}+2\)
\(P\ge2+2=4\)
Min P=4 khi x=2
\(A=2+x-x^2=\frac{-1}{4}+x-x^2+\frac{9}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)
Dấu \(=\)khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\).
Vậy \(maxA=\frac{9}{4}\).
\(A=-x^2+x+2=-\left(x^2-x-2\right)\)
\(=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{9}{4}\right)=-\left(x-\frac{1}{2}\right)^2+\frac{3}{2}\le\frac{3}{2}\)
Dấu ''='' xảy ra khi \(x=\frac{1}{2}\)
Vậy GTNN A là 3/2 khi x = 1/2