K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
15 tháng 6 2021

\(A=2+x-x^2=\frac{-1}{4}+x-x^2+\frac{9}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)

Dấu \(=\)khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\).

Vậy \(maxA=\frac{9}{4}\).

15 tháng 6 2021

\(A=-x^2+x+2=-\left(x^2-x-2\right)\)

\(=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{9}{4}\right)=-\left(x-\frac{1}{2}\right)^2+\frac{3}{2}\le\frac{3}{2}\)

Dấu ''='' xảy ra khi \(x=\frac{1}{2}\)

Vậy GTNN A là 3/2 khi x = 1/2 

14 tháng 8 2016

Bài 1 : A=\(-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}\right)\)

A=\(-\left(x-\frac{1}{2}\right)^2-\frac{1}{4}< \)hoặc bằng -1/4 Vậy A max =1/4 khi x=1/2

15 tháng 8 2016
Dễ thấy hàm số chỉ có 1 điểm cực trị là gtnn nên giá trị lớn nhất là ở 1 trong 2 điểm bị chặn của hàm số thế vào ta được gtln là 30 với x=6 hoặc hoặc -5
15 tháng 1 2016

\(x^3-4x=0\)

\(x\left(x^2-4\right)=0\)

\(x\left(x-2\right)\left(x+2\right)=0\)

\(TH1:x=0\)

\(Th2:x-2=0\Rightarrow x=2\)

\(Th3:x+2=0\Rightarrow x=-2\)

Vậy GTLN của x là 2

27 tháng 12 2021

Bài 1: 

\(A=x^2+6x+9+x^2-10x+25\)

\(=2x^2+4x+34\)

\(=2\left(x^2+2x+17\right)\)

\(=2\left(x+1\right)^2+32>=32\forall x\)

Dấu '=' xảy ra khi x=-1

27 tháng 12 2021

giải cho mình bài 2 lun đc ko

 

27 tháng 8 2016

a/ x2 + x - 1 = x2 + 2 . 0,5x + 0,52 - 1,25 = (x + 0,5)2 -1,25 \(\ge\)-1,25

Đẳng thức xayra khi: x + 0,5 = 0  => x = -0,5

Vậy giá trị nhỏ nhất của x2 + x - 1 là -1,25 khi x = -0,5

b/ Đặt A = 2x2 + 4x + 3  => 2A = 4x2 + 8x + 6 = (2x)2 + 2 . 2 . 2x + 22 + 2 = (2x + 2)2 + 2 \(\ge\)2  => A \(\ge\)1

Đẳng thức xảy ra khi: 2x + 2 = 0  => x = -1

Vậy giá trị nhỏ nhất của 2x2 + 4x + 3 là 1 khi x = -1

NV
21 tháng 8 2021

Đặt \(x+2=t\ne0\Rightarrow x+1=t-1\)

\(A=\dfrac{x+1}{\left(x+2\right)^2}=\dfrac{t-1}{t^2}=-\dfrac{1}{t^2}+\dfrac{1}{t}=-\left(\dfrac{1}{t}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

\(A_{max}=\dfrac{1}{4}\) khi \(t=2\) hay \(x=0\)

\(B=2x^2-6x+7\)

\(=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}+7\)

\(=2\left(x-\frac{3}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

Vậy \(MinB=\frac{5}{2}\Leftrightarrow x=\frac{3}{2}\)

\(C=\left(2x-5\right)^2-4\left(2x-5\right)\)

\(=\left(2x-5\right)\left(2x-5-4\right)=2x-5\)

\(=[\left(2x-5\right)^2-4\left(2x-5\right)+4]-4\)

\(=\left(2x-5-2\right)^2-4\)

\(=\left(2x-7\right)^2-4\ge-4\)

Vậy \(MinC=-4\Leftrightarrow x=\frac{7}{2}\)

21 tháng 8 2021

(2x-5)^2 -4(2x-5)=(2x-5)^2 -4(2x-5)+4-4=(2x-7)^2 -4>=-4 suy ra C đạt gtnn là -4

26 tháng 3 2018

ĐKXĐ x khác 1

x2/(x-1) = (x^2+x-1-x)/(x-1)=1+(x^2-x)/(x-1)= 1+x

vì x>1 nên để P nhỏ nhất thì x=2 khi đó min P = 3

26 tháng 3 2018

bấm phân số kiểu j zậy

26 tháng 3 2018

\(P=\frac{x^2-1}{x-1}+\frac{1}{x-1}\)

\(P=x+1+\frac{1}{x-1}\)

\(P=x-1+\frac{1}{x-1}+2\)

\(P\ge2+2=4\)

Min P=4 khi x=2