Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
a) |x+1/2| +3/4 nhỏ nhất
=> |x+1/2| nhỏ nhất
=> |x+1/2|= 0
=> |x+1/2|+3/4 = 0+3/4 = 3/4
b) |2x+2| - 1 nhỏ nhất
<=> |2x+2| nhỏ nhất
<=> |2x + 2| = 0
2x + 2 = 0
2x = 0 - 2 = -2
x = (-2) : 2 = -1
a)\(\left|x+\frac{1}{2}\right|+\frac{3}{4}\)
\(\left|x+\frac{1}{2}\right|\ge0\Rightarrow\left|x+\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\)
Vậy GTNN của |x+1/2|+3/4 là 3/4
khi\(\left|x+\frac{1}{2}\right|=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
b)\(\left|2x+2\right|\ge0\Rightarrow\left|2x+2\right|-1\ge-1\)
Vậy GTNN của |2x+2|-1 là -1
khi\(\left|2x+2\right|=0\Leftrightarrow2x+2=0\Rightarrow2x=-2\Rightarrow x=-1\)
c)câu c) là sao vậy???
A = 0.5 - / x - 3.5 / < or = 0.5
A giá trị lớn nhất là 0.5 khi x = 3.5
B = - /1.4 - x / - 2 < or -2
B giá trị lớn nhất là -2 khi x = 1.4
C = 1.7+ /3.4 - x / > or = 3.4
C 1.7 x = 3.4
D = / x + 2.8 / - 3.5 > or = -3.5
x = -2.8
Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
có |x-2017|luôn\(\ge0\forall x\in Q\)
cũng có |-1|luôn\(\ge0\forall x\in Q\)
=>I x-2017 I + I x-1 I\(\ge0\forall x\in Q\)
=> I x-2017 I + I x-1 I=|x-2017|+|1-x|=|x-2017+1-x|=2016
dấu''='' xảy ra <=>(x-2017)(1-x)=0
TH1:
=>\(\orbr{\begin{cases}x-2017\ge0\\1-x\le0\end{cases}}\)
TH2:
=> \(\orbr{\begin{cases}x-2017\le0\\1-x\ge0\end{cases}}\)
tự làm típ ! xét 2 TH thấy cái nào mà nó vô lí thì đánh vô lí chọn TH còn lại nhé !
a) Vì |1/3x+4|≥0
=>-2|1/3x+4|≤0
=>-2|1/3x+4|+5/3≤5/3
Dấu "=" xảy ra <=>1/3x+4=0
<=>x=-12
Vậy Amin=5/3 <=>x=-12
b) Vì 3>0
=>(3x+1)²-2 đạt gtnn
Vì (3x+1)²≥0
=>(3x+1)²-2≥-2
Dấu "=" xảy ra <=>3x+1=0
<=>3x=-1
<=>x=-1/3
1.Tìm giá trị lớn nhất của:
A = 0,5 - |x - 3,5|
Để A đạt GTLN thì |x-3,5| đạt GTNN
Mà |x-3,5| >/ 0
=> |x-3,5| = 0
Vậy GTLN của A là 0,5 - |x-3,5| =0,5 -0 =0,5.
B = - |1,4 - x| - 2
Để B đạt GTLN thì -|1,4 -x| đạt GTLN
mà -|1,4 -x| \< 0
=> -|1,4 -x| =0
Vậy GTLN của B là -|1,4-x| -2 = 0-2 =-2
2.Tìm giá trị nhỏ nhất của:
C = 1,7 + |3,4 - x|
Để C đạt GTNN thì |3,4 -x| đạt GTNN
mà |3,4 -x| >/ 0
=> |3,4 -x| = 0
Vậy GTNN của C là 1,7 +|3,4-x|= 1,7 +0 =1,7
D = |x + 2,8| - 3,5
Để D đạt GTNN thì |x+2,8| đạt GTNN
mà |x+2,8| >/ 0
=> |x+2,8| =0
Vậy GTNN của D là |x+2,8| -3,5 = 0- 3,5 = -3,5
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.