K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

\(-4x^2+4x+2013=-\left(4x^2-4x+1\right)+2014=-\left(2x-1\right)^2+2014\le2014\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)

 

26 tháng 12 2021

a: \(A=4x^2-4x+1-4=\left(2x-1\right)^2-4>=-4\forall x\)

Dấu '=' xảy ra khi x=1/2

22 tháng 12 2021

\(P=2017-2x^2+4x-8y^2-8y\\ P=-2\left(x^2-2x+1\right)-2\left(4y^2+4y+1\right)+2021\\ P=-2\left(x-1\right)^2-2\left(2y+1\right)^2+2021\le2021\\ P_{max}=2021\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{1}{2}\end{matrix}\right.\)

28 tháng 9 2019

A = 9x2 + 6x + 15

A = [(3x + 6x + 1] + 14

A = (3x + 1)2 + 14 \(\ge\)14

Dấu = xảy ra \(\Leftrightarrow\)3x + 1 = 0

                        \(\Rightarrow\)3x = - 1

                       \(\Rightarrow\)x = - 1 / 3

Min A = 14 \(\Leftrightarrow\)x = - 1 / 3

27 tháng 6 2019

2.) A=x2-6x+15=(x-3)2+6

Vì (x-3)2>=0 với mọi x 

=> (x-s)2+6>=6 với mọi x

hay A>=6 với mọi x

Dấu = xảy ra <=> x-3=0 <=> x=3

Vậy....

B=x2+4y2-4x+4y+15 = (x2-4x+4)+(4y2+4y+1)+10= (x-2)2+(2y+1)2+10

vì (x-2)2 >= 0 với mọi x ; (2y+1)2>=0 với mọi y

6>0

=> (x-2)2+(2y+1) + 6>=6 với mọi x;y

hay B>=6 với mọi x;y

Dấu = xảy ra <=> x-2=0 và 2y+1=0

               <=> x=2 và y=-1/2

Vậy....

27 tháng 6 2019

3) A= -x2+4x+3= -(x2-4x+4)+7 = -(x-2)2+7

vì -(x-2)2<=0 với mọi x

=> -(x-2)2+7<=7 với mọi x

hay A<=7 với mọi x

Dấu = xảy ra <=> x-2=0 <=> x=2

Vậy....

B=-x2-9y2+2x-6y+5= -(x2-2x+1)-(9y2+6y+1)+7 = -(x-1)2-(3y+1)2+7

vì -(x-1)2<=0 với mọi x 

-(3y+1)2<=0 với mọi y

suy ra: -(x-1)2-(3y+1)2<=0 với mọi x;y

=> -(x-1)2-(3y+1)2+7<=7 với mọi x;y

hay A<=7 với mọi x, y

Dấu = xảy ra <=> x-1=0 và 3y+1=0

                 <=> x=1 và y=-1/3

vậy...

6 tháng 5 2020

\(A=\left[\frac{6x^2}{x^3-1}-\frac{2x-2}{x^2+x+1}-\frac{1}{x-1}\right]:\frac{x^2+9}{\left(x-1\right)\left(9-4x\right)}\)

\(=\left[\frac{6x^2}{x^3-1}-\frac{\left(2x-2\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{6x^2-\left(2x^2-4x+2\right)-x^2-x-1}{\left(x^2+x+1\right)\left(x-1\right)}\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{5x^2-2x^2+4x-2-x-1}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

\(=\frac{3x^2+3x-3}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

Biểu thức A bạn viết đúng chưa?