K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2019

A = -x2 - 2xy - y2 - 2y2 + 10x + 10y + 4y - 25 + 7
= (-x2 - 2xy - y2 + 10x + 10y - 25) - 2y2 + 4y + 7
= -(x2 + 2xy + y2 - 10x - 10y + 25) - (2y2 - 4y - 7)
= -[(x+y)2 - 10(x+y) + 25] - (2y2 - 4y + 2 - 9)
= -(x + y - 5)2 - 2(y2 - 2y + 1) + 9
= -(x + y - 5)2 - 2(y - 1)2 + 9 ≤ 9
Dấu ''='' xảy ra <=> x + y - 5 = 0 và y -1 =0
<=> x + y = 5 và y = 1
<=> x = 4 và y = 1
Vậy max A = 9 <=> x = 4 và y = 1 .
- Mình chúc bạn học tốt nhé !

31 tháng 1 2020

Ta có: \(\sqrt{x^2+y^2+4x-2y+5}+\sqrt{x^2+y^2-8x-14y+65}=6\sqrt{2}\)

\(\Leftrightarrow\sqrt{\left(x+2\right)^2+\left(y-1\right)^2}+\sqrt{\left(4-x\right)^2+\left(7-y\right)^2}=6\sqrt{2}\left(^∗\right)\)

Xét hai vectơ \(\overrightarrow{u}=\left(x+2;y-1\right)\)và \(\overrightarrow{v}=\left(4-x;7-y\right)\)

Ta có: \(\overrightarrow{u}+\overrightarrow{v}=\left(6;6\right)\Rightarrow\left|\overrightarrow{u}+\overrightarrow{v}\right|=\sqrt{6^2+6^2}=6\sqrt{2}\)

Do vậy \(\left(^∗\right)\)trở thành\(\overrightarrow{u}+\overrightarrow{v}=\left|\overrightarrow{u}+\overrightarrow{v}\right|\)

Điều này xảy ra khi và chỉ khi \(\overrightarrow{u}\)và \(\overrightarrow{v}\)cùng hướng

\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)\left(7-y\right)=\left(y-1\right)\left(4-x\right)\\\left(x+2\right)\left(4-x\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x+3\\-2\le x\le4\end{cases}}\)

Khi y = x + 3 thì \(x^2+y^2-2x+2y+2=2x^2+6x+17\)

Xét hàm số \(f\left(x\right)=2x^2+6x+17\)trên đoạn \(\left[-2;4\right]\)

Ta có: \(-\frac{6}{2.2}=\frac{-3}{2}\in\left[-2;4\right]\)và \(f\left(-2\right)=13;f\left(-\frac{3}{2}\right)=\frac{25}{2};f\left(4\right)=73\)

Suy ra \(|^{min}_{\left[-2;4\right]}f\left(x\right)=\frac{25}{2}\);\(|^{max}_{\left[-2;4\right]}f\left(x\right)=73\)

Do đó \(m=\frac{25}{2};M=73\)và \(n+M=\frac{171}{2}\)

Vậy \(n+M=\frac{171}{2}\)

NV
2 tháng 3 2023

a.

Phương trình hoành độ giao điểm:

\(x^2+6x+3=-2mx-m^2\Leftrightarrow x^2+2\left(m+3\right)x+m^2+3=0\)

\(\Delta'=\left(m+3\right)^2-\left(m^2+3\right)=6\left(m+1\right)>0\Rightarrow m>-1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=-2\left(m+3\right)\\x_Ax_B=m^2+3\end{matrix}\right.\)

\(P=10\left(m+3\right)-2\left(m^2+3\right)=-2m^2+10m+24\)

\(P=-2\left(m-\dfrac{5}{2}\right)^2+\dfrac{73}{2}\le\dfrac{73}{2}\)

\(P_{max}=\dfrac{73}{2}\) khi \(m=\dfrac{5}{2}\)

b.

Pt hoành độ giao điểm:

\(x^2-2x-2=x+m\Leftrightarrow x^2-3x-m-2=0\)

\(\Delta=9+4\left(m+2\right)>0\Rightarrow m>-\dfrac{17}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=3\\x_Ax_B=-m-2\end{matrix}\right.\)

Đồng thời \(y_A=x_A+m\) ; \(y_B=x_B+m\)

\(P=OA^2+OB^2=x_A^2+y_A^2+x_B^2+y_B^2\)

\(=x_A^2+x_B^2+\left(x_A+m\right)^2+\left(x_B+m\right)^2\)

\(=2\left(x_A^2+x_B^2\right)+2m\left(x_A+x_B\right)+2m^2\)

\(=2\left(x_A+x_B\right)^2-4x_Ax_B+2m\left(x_A+x_B\right)+2m^2\)

\(=18-4\left(-m-2\right)+6m+2m^2\)

\(=2m^2+10m+26=2\left(m+\dfrac{5}{2}\right)^2+\dfrac{27}{2}\ge\dfrac{27}{2}\)

Dấu "=" xảy ra khi \(m=-\dfrac{5}{2}\)

2 tháng 3 2023

Mình cảm ơn ạ

giúp em với

 

31 tháng 1 2020

Bạn tham khảo nhé!

Câu hỏi của Lê VĂn Chượng - Toán lớp 10 - Học toán với OnlineMath