Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2+2(m-1)x+m2+1=0 (*) Để phương trình (*) có 2 nghiệm phân biệt khi: \(\Delta>0\) hay \(\Delta=4\left(m-1\right)^2-4\left(m^2+1\right)>0\Leftrightarrow-8m>0\Leftrightarrow m<0\left(I\right)\)
Theo giả thiết giả sử ta có: \(x_1>1,x_2<1\Rightarrow\left(x_1-1\right)\left(x_2-1\right)<0\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1<0\left(II\right)\)
Theo Vi-et ta có: \(x_1x_2=m^2+1;x_1+x_2=-2\left(m-1\right)\) Thay vào (II) Ta có: \(m^2+1+2\left(m-1\right)+1<0\Leftrightarrow m\left(m+2\right)<0\)
Hay -2<m<0 Thỏa mãn cả (I).
Vậy -2<m<0 Thì phương trình (*) thỏa mãn điều kiện bài ra
Ta có: \(\Delta=\left(2m-1\right)^2-4\cdot1\cdot\left(m^2-2\right)\)
\(=4m^2-4m+1-4m^2+8\)
\(=-4m+9\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow-4m+9>0\)
\(\Leftrightarrow-4m>-9\)
hay \(m< \dfrac{9}{4}\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1\cdot x_2=m^2-2\end{matrix}\right.\)
Ta có: \(\left|x_1-x_2\right|=\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x_1-x_2\right)^2}=\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{5}\)
\(\Leftrightarrow\left(2m-1\right)^2-4\cdot\left(m^2-2\right)=5\)
\(\Leftrightarrow4m^2-4m+1-4m^2+8=5\)
\(\Leftrightarrow-4m=-4\)
hay m=1(thỏa ĐK)
Vậy: m=1
PT có 2 nghiệm phân biệt
`<=>Delta>0`
`<=>(2m-1)^2-4(m^2-2)>0`
`<=>4m^2-4m+1-4m^2+8>0`
`<=>-4m+9>0`
`<=>m<9/4`
Áp dụng vi-ét:`x_1+x_2=2m-1,x_1.x_2=m^2-2`
`|x_1-x_2|=\sqrt5`
`<=>(x_1-x_2)^2=5`
`<=>(x_1+x_2)^2-4(x_1.x_2)=5`
`<=>4m^2-4m+1-4m^2+8=5`
`<=>-4m+8=5`
`<=>4m=3`
`<=>m=3/4(tm)`
Vậy `m=3/4=>|x_1-x_2|=\sqrt5`
2.giải phương trình trên , ta được :
\(x_1=\frac{-m+\sqrt{m^2+4}}{2};x_2=\frac{-m-\sqrt{m^2+4}}{2}\)
Ta thấy x1 > x2 nên cần tìm m để x1 \(\ge\)2
Ta có : \(\frac{-m+\sqrt{m^2+4}}{2}\ge2\) \(\Leftrightarrow\sqrt{m^2+4}\ge m+4\)( 1 )
Nếu \(m\le-4\)thì ( 1 ) có VT > 0, VP < 0 nên ( 1 ) đúng
Nếu m > -4 thì ( 1 ) \(\Leftrightarrow m^2+4\ge m^2+8m+16\Leftrightarrow m\le\frac{-3}{2}\)
Ta được : \(-4< m\le\frac{-3}{2}\)
Tóm lại, giá trị phải tìm của m là \(m\le\frac{-3}{2}\)
a.Bạn thế vào nhé
b.\(\Delta=3^2-4m=9-4m\)
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)
c.Ta có: \(x_1=-1\)
\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)
d.Theo hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)
1/ \(x_1^2+x_2^2=34\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)
\(\Leftrightarrow\left(-3\right)^2-2m=34\)
\(\Leftrightarrow m=-12,5\)
..... ( Các bài kia tương tự bạn nhé )
Xét phương trình đã cho có dạng: $ax^2+bx+c=0$ với \(\left\{{}\begin{matrix}a=1\ne0\\b=3m+2\\c=3m+1\end{matrix}\right.\)
suy ra phương trình đã cho là phương trình bậc hai một ẩn $x$
Có $Δ=b^2-4ac=(3m+2)^2-4.(3m+1).1=9m^2=(3m)^2 \geq 0$ với mọi $m$ nên phương trình có 2 nghiệm phân biệt $⇔m \neq 0$
nên phương trình đã cho có 2 nghiệm $x_1;x_2$ với
$x_1=\dfrac{-b-\sqrt[]{ Δ}}{2a}=\dfrac{-(3m+2)-3m}{2}=-3m-1$
$x_2=\dfrac{-b+\sqrt[]{Δ}}{2a}=\dfrac{-(3m+2)+3m}{2}=-1$
Nên phương trình có 2 nghiệm nhỏ hơn 2 $⇔-3m-1<2⇔m>-1$
Vậy $m>-1;m \neq 0$ thỏa mãn đề
Ta có: \(\text{Δ}=\left(3m+2\right)^2-4\cdot1\cdot\left(3m+1\right)\)
\(=9m^2+12m+4-12m-4\)
\(=9m^2\ge0\forall m\)
Do đó: Phương trình luôn có 2 nghiệm
Để phương trình có hai nghiệm phân biệt thì \(9m^2\ne0\)
hay \(m\ne0\)
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3m-2}{1}=-3m-2\\x_1\cdot x_2=\dfrac{3m+1}{1}=3m+1\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1< 2\\x_2< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m+1-2\left(-3m-2\right)+4>0\\-3m-2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m+1+6m+4+4>0\\-3m< 6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9m>-9\\m< -2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m< -2\end{matrix}\right.\Leftrightarrow-3< m< -2\)
Kết hợp ĐKXĐ, ta được: -3<m<-2
Vậy: -3<m<-2
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.
vi-ét nhé
Để phương trình x2+2(m-1)x+m2+1=0 (*) có 2 nghiệm phân biệt ta có:
\(\Delta=4\left(m-1\right)^2-4\left(m^2+1\right)>0\Leftrightarrow-8m>0\Rightarrow m<0\left(I\right)\) Để phương trình có một nghiệm lớn hơn một, và một nghiệm kia nhỏ hơn một.
Giả sử \(x_1>1,x_2<1\) Ta có \(\left(x_1-1\right)\left(x_2-1\right)<0\) nhân ra ta có \(x_1x_2-\left(x_1+x_2\right)+1<0\left(II\right)\) Theo Viet ta có:
\(x_1x_2=m^2+1\) Và \(x_1+x_2=2\left(1-m\right)\) Thay vào \(\left(II\right)\) ta có: \(m^2+1+2\left(m-1\right)+1<0\) Vậy ta có:
\(m\left(m+2\right)<0\) nghiệm của bất phương trình là: -2<m<0 thỏa mãn (I). Vậy -2<m<0 thì phương trình (*) thỏa mãn điều kiện đề bài.