Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử hai đường thẳng ( d 1 ): 5x – 2y = 3; ( d 2 ): x + y = m cắt nhau tại điểm A(x, y).
Vì giao điểm A nằm trên trục Oy nên x = 0. Suy ra: A(0; y).
Khi đó điểm A(0; y) là nghiệm của hệ phương trình:
Vậy khi m = - 3/2 thì ( d 1 ): 5x – 2y = 3; (d2): x + y = m cắt nhau tại một điểm trên trục Oy.
Phương trình đường thẳng ( d 2 ): x + y = - 3/2
Đồ thị:
b: Phương trình hoành độ giao điểm là:
x+1=-x+3
\(\Leftrightarrow2x=2\)
\(\Leftrightarrow x=1\)
hay y=2
b) Điểm M có tung độ y = 1 nên hoành độ là
Điểm N có tung độ y = 1 nên hoành độ là
Giả sử hai đường thẳng ( d 1 ): mx + 3y = 10; ( d 2 ): x – 2y = 4 cắt nhau tại điểm B(x, y).
Vì điểm B nằm trên trục Ox nên y = 0 ⇒ B( x, 0).
Khi đó điểm B(x; 0) là nghiệm của hệ phương trình:
Vậy khi m = 5/2 thì ( d 1 ): mx + 3y = 10; ( d 2 ): x – 2y = 4 cắt nhau tại một điểm trên trục Ox.
Phương trình đường thẳng (d1): 5x + 6y = 20
*Vẽ ( d 1 ): Cho x = 0 thì y = 10/3 ⇒ (0; 10/3 )
Cho y = 0 thì x = 4 ⇒ (4; 0)
*Vẽ ( d 2 ): x - 2y = 4. Cho x = 0 thì y = -2 ⇒ (0; -2)
Cho y = 0 thì x = 4 ⇒ (4; 0)
Đồ thị: