Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\left|sinx\right|\le1\\\left|cosx\right|\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}sin^{4034}x\le sin^2x\\cos^{4038}x\le cos^2x\end{matrix}\right.\)
\(\Rightarrow sin^{4034}x+cos^{4038}x< sin^2x+cos^2x=1\) (dấu = ko xảy ra)
\(\Rightarrow\left|sin^{2017}x-cos^{2019}x\right|< \sqrt{\left(1+1\right)\left(sin^2x+cos^2x\right)}=\sqrt{2}\)
\(\Rightarrow sin^{2017}x-cos^{2019}x+\sqrt{2}>0\) \(\forall x\)
Vậy để hàm số xác định với mọi x trên đoạn đã cho
\(\Rightarrow m-sinx-cosx-2sinx.cosx\ge0\) \(\forall x\)
\(\Leftrightarrow sinx+cosx+2sinx.cosx\le m\)
Đặt \(sinx+cosx=t\Rightarrow2sinx.cosx=t^2-1\) \(\left(-1\le t\le\sqrt{2}\right)\)
\(\Rightarrow t^2+t-1\le m\Rightarrow m\ge\max\limits_{\left[-1;\sqrt{2}\right]}\left(t^2+t-1\right)=\sqrt{2}+1\)
Vậy \(m\ge\sqrt{2}+1\)
Sử dụng Bunhiacopxki thôi:
\(\left(sin^{2017}x-cos^{2019}x\right)^2\le\left(1+1\right)\left(sin^{4034}x+cos^{4038}x\right)< 2\left(sin^2x+cos^2x\right)=2\)
\(\Rightarrow-\sqrt{2}< sin^{2017}x-cos^{2019}x< \sqrt{2}\)
BĐT bên trái chuyển vế cho ta: \(sin^{2017}x-cos^{2019}x+\sqrt{2}>0\)
Bạn tham khảo:
Tìm m để hàm số : \(y=\sqrt{\frac{m-\sin x-\cos x-2\sin x\cos x}{\sin^{2017}x-\cos^{2019}x \sqrt{2}}}\) xác định với mọi... - Hoc24
Ớ anh ơi, nhấn vô cái link tham khảo nó lại ra đúng link của câu này ạ :(
a/ Hmm, bạn có nhầm lẫn chỗ nào ko nhỉ, nghiệm của pt này xấu khủng khiếp
b/ \(\Leftrightarrow sin\frac{5x}{2}-cos\frac{5x}{2}-sin\frac{x}{2}-cos\frac{x}{2}=cos\frac{3x}{2}\)
\(\Leftrightarrow2cos\frac{3x}{2}.sinx-2cos\frac{3x}{2}cosx=cos\frac{3x}{2}\)
\(\Leftrightarrow cos\frac{3x}{2}\left(2sinx-2cosx-1\right)=0\)
\(\Leftrightarrow cos\frac{3x}{2}\left(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)-1\right)=0\)
c/ Do \(cosx\ne0\), chia 2 vế cho cosx ta được:
\(3\sqrt{tanx+1}\left(tanx+2\right)=5\left(tanx+3\right)\)
Đặt \(\sqrt{tanx+1}=t\ge0\)
\(\Leftrightarrow3t\left(t^2+1\right)=5\left(t^2+2\right)\)
\(\Leftrightarrow3t^3-5t^2+3t-10=0\)
\(\Leftrightarrow\left(t-2\right)\left(3t^2+t+5\right)=0\)
d/ \(\Leftrightarrow\sqrt{2}\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{3}\right)=-sin\left(2x-\frac{\pi}{3}\right)\)
Đặt \(x+\frac{\pi}{3}=a\Rightarrow2x=2a-\frac{2\pi}{3}\Rightarrow2x-\frac{\pi}{3}=2a-\pi\)
\(\sqrt{2}sina=-sin\left(2a-\pi\right)=sin2a=2sina.cosa\)
\(\Leftrightarrow\sqrt{2}sina\left(\sqrt{2}cosa-1\right)=0\)
Câu 2 bạn coi lại đề
3.
\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)
\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)
\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)
\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
4.
Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm
5.
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)
\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)
Xét (1):
\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)
\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)
\(\Leftrightarrow2sin^3x-sinx-1=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)
\(\Leftrightarrow...\)
a/
\(sin^2x-sinx=2\left(1-sin^2x\right)\)
\(\Leftrightarrow3sin^2x-sinx-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\frac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\\x=arcsin\left(\frac{2}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{2}{3}\right)+k2\pi\end{matrix}\right.\)
2.
\(2sin^2x+\left(1-\sqrt{3}\right)sinx-\frac{\sqrt{3}}{2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\sinx=\frac{\sqrt{3}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\\x=\frac{\pi}{3}+k2\pi\\x=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
3.
\(\Leftrightarrow\left[{}\begin{matrix}3x+\frac{\pi}{4}=\frac{\pi}{8}+k2\pi\\3x+\frac{\pi}{4}=-\frac{\pi}{8}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{24}+\frac{k2\pi}{3}\\x=-\frac{\pi}{8}+\frac{k2\pi}{3}\end{matrix}\right.\)
d/
\(\Leftrightarrow\sqrt{2}\left(\frac{1}{2}cos\left(\frac{x}{5}-\frac{\pi}{12}\right)-\frac{\sqrt{3}}{2}sin\left(\frac{x}{5}-\frac{\pi}{12}\right)\right)=sin\left(\frac{x}{5}+\frac{2\pi}{3}\right)-sin\left(\frac{3x}{5}+\frac{\pi}{6}\right)\)
\(\Leftrightarrow\sqrt{2}cos\left(\frac{x}{5}-\frac{\pi}{12}+\frac{\pi}{3}\right)=2cos\left(\frac{2x}{5}+\frac{5\pi}{12}\right)sin\left(\frac{\pi}{4}-\frac{x}{5}\right)\)
\(\Leftrightarrow cos\left(\frac{x}{5}-\frac{\pi}{4}\right)=\sqrt{2}cos\left(\frac{2x}{5}+\frac{5\pi}{12}\right)cos\left(\frac{x}{5}-\frac{\pi}{4}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\left(\frac{x}{5}-\frac{\pi}{4}\right)=0\\cos\left(\frac{2x}{5}+\frac{5\pi}{12}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{5}-\frac{\pi}{4}=\frac{\pi}{2}+k\pi\\\frac{2x}{5}+\frac{5\pi}{12}=\frac{\pi}{4}+k2\pi\\\frac{2x}{5}+\frac{5\pi}{12}=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{15\pi}{4}+k5\pi\\x=-\frac{5\pi}{12}+k5\pi\\x=-\frac{5\pi}{3}+k5\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow\sqrt{3}sin\left(x-\frac{\pi}{3}\right)+cos\left(\frac{\pi}{3}-x\right)=2sin1972x\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin\left(x-\frac{\pi}{3}\right)+\frac{1}{2}cos\left(x-\frac{\pi}{3}\right)=sin1972x\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{3}+\frac{\pi}{6}\right)=sin1972x\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)=sin1972x\)
\(\Leftrightarrow\left[{}\begin{matrix}1972x=x-\frac{\pi}{6}+k2\pi\\1972x=\frac{7\pi}{6}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{11826}+\frac{k2\pi}{1971}\\x=\frac{7\pi}{11838}+\frac{k2\pi}{1973}\end{matrix}\right.\)
7.
ĐKXĐ: \(x\ne\frac{k\pi}{2}\)
\(\Leftrightarrow8cosx=\frac{\sqrt{3}cosx+sinx}{sinx.cosx}\)
\(\Leftrightarrow8cosx.sinx.cosx=\sqrt{3}cosx+sinx\)
\(\Leftrightarrow4sin2x.cosx=\sqrt{3}cosx+sinx\)
\(\Leftrightarrow2sin3x+2sinx=\sqrt{3}cosx+sinx\)
\(\Leftrightarrow2sin3x=\sqrt{3}cosx-sinx\)
\(\Leftrightarrow sin3x=\frac{\sqrt{3}}{2}cosx-\frac{1}{2}sinx\)
\(\Leftrightarrow sin\left(-3x\right)=sin\left(x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x=x-\frac{\pi}{3}+k2\pi\\-3x=\frac{4\pi}{3}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+\frac{k\pi}{2}\\x=-\frac{2\pi}{3}+k\pi\end{matrix}\right.\)
5.
\(sin\left(2x+\frac{\pi}{2}+2\pi\right)-2cos\left(x+\frac{\pi}{2}-4\pi\right)=1+2sinx\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{2}\right)-2cos\left(x+\frac{\pi}{2}\right)=1+2sinx\)
\(\Leftrightarrow cos2x+2sinx=1+2sinx\)
\(\Leftrightarrow cos2x=1\)
\(\Rightarrow x=k\pi\)
6.
\(sin^22x-cos^28x=sin\left(10x+\frac{\pi}{2}+8\pi\right)\)
\(\Leftrightarrow\frac{1-cos4x}{2}-\frac{1+cos16x}{2}=sin\left(10x+\frac{\pi}{2}\right)\)
\(\Leftrightarrow-\left(cos4x+cos16x\right)=2cos10x\)
\(\Leftrightarrow-2cos10x.cos6x=2cos10x\)
\(\Leftrightarrow\left[{}\begin{matrix}cos10x=0\\cos6x=-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}10x=\frac{\pi}{2}+k\pi\\6x=\pi+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{20}+\frac{k\pi}{10}\\x=\frac{\pi}{6}+\frac{k\pi}{3}\end{matrix}\right.\)