Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=4(x+y)+21xy(x+y)+7x2y2(x+y)+2014
M=4.0+21xy.0+7x2y2.0+2014
M=0+0+0+2014=2014
nhớ
ko cho ko đâu
\(A=x^3-y^3-21xy\)
\(A=\left(x-y\right).\left(x^2+xy+y^2\right)-21xy\)
\(A=7.\left(x^2+xy+y^2\right)-21xy\)
\(A=7.\left(x^2+xy+y^2+3xy\right)\)
\(A=7.\left(x^2+2xy+y^2+2xy\right)\)
\(A=7.\text{[}\left(x+y\right)^2+2xy\text{]}\)
\(A=7.\left(7^2+2xy\right)\)
\(A=7^3+14xy\)
Ngáo rồi @@
\(\)
\(A=x^3-y^3-21xy\)
\(\Rightarrow A=\left(x-y\right)\left(x^2+xy+y^2\right)-21xy\)
\(\Rightarrow A=7\left(x^2+xy+y^2\right)-21xy\)
\(\Rightarrow A=7\left(x^2+xy+y^2-3xy\right)\)
\(\Rightarrow A=7\left(x^2+y^2-2xy\right)\)
\(\Rightarrow A=7\left(x-y\right)^2\)
\(\Rightarrow A=7.7^2\)
\(\Rightarrow A=7.49\)
\(\Rightarrow A=343\)
\(2x\left(x-3y\right)-4y\left(x+2\right)-2\left(x^2-3y-4xy\right)\)
\(=2x^2-6xy-4xy+8y-2x^2-6y-8xy\)
\(=2x^2-10xy+8y-2x^2-14xy\)
\(=10xy+8y-14xy\)
\(=-4xy+8y\)
\(=-4.\left(\frac{-2}{3}.\frac{3}{4}\right)+8.\frac{3}{4}\)
\(=-4.\frac{-1}{2}+6\)
\(=2+6=8\)
\(2x^2-6xy-4xy-8y-2x^2+6y+8xy\)
\(=-2y-2xy\)
thay \(x=\frac{-2}{3};y=\frac{3}{4}\) vào biểu thức ta có
\(-2.\frac{3}{4}-2.\frac{-2}{3}\frac{3}{4}=\frac{-3}{2}+1=\frac{-3+2}{2}=\frac{-1}{2}\)
nếu có sai bn thông cảm
\(2x\left(x-3y\right)-4y\left(x+2\right)-2\left(x^2-3y-4xy\right)\)
\(=2x^2-3y-4xy+8y-2x^2+3y+4xy\)
\(=-2y-2xy\)
Thay x,y ta có:
\(-2y-2xy=-2\left(\frac{3}{4}\right)-2\left(\frac{-2}{3}.\frac{3}{4}\right)\)
\(-2y-2xy=\frac{-3}{2}-2.\frac{-1}{2}\)
\(-2y-2xy=\frac{-3}{2}-\left(-1\right)\)
\(-2y-2xy=\frac{-3}{2}+1=\frac{-3}{2}+\frac{2}{2}=\frac{-1}{2}\)
Vậy biểu thức trên có giá trị bằng \(\frac{-1}{2}\)
(3x - 1)^2016 + (5y - 3)^2016 < 0 (1)
có (3x - 1)^2016 > 0
(5y - 3)^2018 > 0
=> (3x-1)^2016 + (5y - 3)^2018 > 0 và (1)
=> (3x - 1)^2016 + (5y - 3)^2016 = 0
=> 3x - 1 = 0 và 5y - 3 = 0
=> x = 1/23 và y = 3/5
Sửa đề:
Tìm giá trị biểu thức:
\(M=4x+4y+21xy\left(x+y\right)+7\left(x^3y^2+x^2y^3\right)+2014\)
Có phải đề như vậy không? Thôi giải luôn!
Giải:
Ta có:
\(M=4x+4y+21xy\left(x+y\right)+7\left(x^3y^2+x^2y^3\right)+2014\)
\(\Rightarrow M=4\left(x+y\right)+21xy\left(x+y\right)+7x^2y^2\left(x+y\right)+2014\)
Mà \(x+y=0\)
\(\Rightarrow M=4.0+21xy.0+7x^2y^2.0+2014\)
\(\Rightarrow M=0+0+0+2014\)
\(\Rightarrow M=2014\)
Vậy \(M=2014\)
đề bài