Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M<1 => \(\frac{x-3}{x+2}\)<1
<=> \(\frac{x-3}{x+2}\)- 1 < 0
<=> \(\frac{x-3}{x+2}\)-\(\frac{x+2}{x+2}\)< 0
<=> \(\frac{x-3-x-2}{x+2}\)< 0
<=> -5 < 0
=> Vô nghiệm
đa thức trên không có nghiệm vì
với mọi x=a ( dương) thì 2a^4+3a+1 luôn luôn > 0
Ta có: x=2018
nên x+1=2019
Ta có: \(A=x^5-2019x^4+2019x^3-2019x^2+2019x-2020\)
\(=x^5-x^4\left(x+1\right)+x^3\left(x+1\right)-x^2\left(x+1\right)+x\left(x+1\right)-2020\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-2020\)
\(=x-2020=2019-2020=-1\)
Đặt A = 1 +3 +5 +...+(2n-1)
Số số hạng của A là : [(2n-1)-1]:2 +1 = n
Tổng A = [(2n-1)+1]xn:2=n2
=> n2=169
=>n2=132
=>n=13
Ta có
\(\hept{\begin{cases}a_2^2=a_1.a_3\\a_3^2=a_2.a_4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{a_1}{a_2}=\frac{a_2}{a_3}\\\frac{a_2}{a_3}=\frac{a_3}{a_4}\end{cases}}}\)
\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)
\(\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\left(1\right)\)
Ta lại có
\(\frac{a_2^2}{a_3^2}=\frac{a_1.a_3}{a_2.a_4}\)
\(\frac{a_2^3}{a_3^3}=\frac{a_1}{a_4}\left(2\right)\)
Từ (1) và (2)
\(\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)