Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(x^2+x+\frac{2}{3}\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{5}{12}\)
\(=\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{5}{12}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{5}{12}\)
Mà ; \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(\left(x+\frac{1}{2}\right)^2+\frac{5}{12}\ge\frac{5}{12}\forall x\)
Vậy GTNN của biểu thức là : \(\frac{5}{12}\) khi \(x=-\frac{1}{2}\)
Lời giải:
a)
\(f(0)=\frac{-0}{2}+3=3\)
$f(1)=\frac{-1}{2}+3=\frac{5}{2}$
$f(-1)=\frac{-(-1)}{2}+3=\frac{7}{2}$
$f(2)=\frac{-2}{2}+3=2$
$f(6)=\frac{-6}{2}+3=0$
$f(\frac{1}{2})=\frac{-\frac{1}{2}}{2}+3=\frac{11}{4}$
b)
\(f(x)=2x-3\Rightarrow f(x+1)=2(x+1)-3=2x-1\)
Do đó: \(f(x+1)-f(x)=2x-1-(2x-3)=2\)
c)
\(f(2)=3.2-9=-3\)
\(f(-2)=3(-2)-9=-15\)
\(g(0)=3-2.0=3\)
\(g(3)=3-2.3=-3\)
Bài 5:
a. 1 - 2y + y2
= (1 - y)2
b. (x + 1)2 - 25
= (x + 1)2 - 52
= (x + 1 - 5)(x + 1 + 5)
= (x - 4)(x + 6)
c. 1 - 4x2
= 12 - (2x)2
= (1 - 2x)(1 + 2x)
d. 8 - 27x3
= 23 - (3x)3
= (2 - 3x)(4 + 6x + 9x2)
e. (đề hơi khó hiểu ''x3'' !?)
g. x3 + 8y3
= (x + 2y)(x2 - 2xy + y2)
Bài 1:
Để \(F\left(x\right)=G\left(x\right)\) thì \(3x^2-8x+4=3x+4\)
\(\Leftrightarrow3x^2-11x=0\)
\(\Leftrightarrow x\left(3x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{11}{3}\end{matrix}\right.\)
f) \(x^3-6x^2+11x-6=0\)
\(\Leftrightarrow x^3-5x^2+6x-x^2+5x-6=0\)
\(\Leftrightarrow x\left(x^2-5x+6\right)-\left(x-5x+6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-2x-3x+6\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\)x = 1 hoặc x = 2 hoặc x = 3
g) +) Với x\(\ge\)0,5 thì |2x - 1| = 2x - 1
Phương trình trở thành: x + 2x - 1 =5
<=> 3x - 1 = 5
<=> x = 2 > 0,5 (thỏa mãn)
+) Với x < 0,5 thì |2x - 1| = 1 - 2x
Phương trình trở thành: x + 1 - 2x = 5
<=> -x + 1 = 5
<=> x = -4 < 0,5(thỏa mãn)
h) \(2x^3+3x^2-32x=48\)
\(\Leftrightarrow2x^3+3x^2-32x-48=0\)
\(\Leftrightarrow2\left(x^3+\frac{3}{2}x^2-16x-24\right)=0\)
\(\Leftrightarrow2\left[x^2\left(x+\frac{3}{2}\right)-16\left(x+\frac{3}{2}\right)\right]=0\)
\(\Leftrightarrow2\left(x^2-16\right)\left(x+\frac{3}{2}\right)=0\)
\(\Leftrightarrow2\left(x-4\right)\left(x+4\right)\left(x+\frac{3}{2}\right)=0\)
<=> x = 4 hoặc x = -4 hoặc x = \(\frac{-3}{2}\)
a: \(\Leftrightarrow10x^2+17x+3-4x+17=0\)
\(\Leftrightarrow10x^2+13x+20=0\)
\(\text{Δ}=13^2-4\cdot10\cdot20=-631< 0\)
Do đó: Phương trình vô nghiệm
b: \(\Leftrightarrow x^2+7x-3=x^2-x-1\)
=>8x=2
hay x=1/4
c: \(\Leftrightarrow2x^2-5x-3=x^2-1+3=x^2+2\)
\(\Leftrightarrow x^2-5x-5=0\)
\(\text{Δ}=\left(-5\right)^2-4\cdot1\cdot\left(-5\right)=25+20=45>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{5-3\sqrt{5}}{2}\\x_2=\dfrac{5+3\sqrt{5}}{2}\end{matrix}\right.\)