Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)
\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)
Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)
Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)
Lời giải:
Gọi đa thức dư khi lấy $f(x)$ chia cho $x^2+x-6$ là $ax+b$ với $a,b\in\mathbb{R}$, $Q(x)$ là đa thức thương.
Theo bài ra ta có:
$f(2)=6067$
$f(-3)=-4043$
$f(x)=(x^2+x-6)Q(x)+ax+b=(x-2)(x+3)Q(x)+ax+b$
Cho $x=2$ thì:
$f(2)=0.Q(2)+2a+b=2a+b$
$\Leftrightarrow 6067=2a+b(1)$
Cho $x=-3$ thì:
$f(-3)=0.Q(-3)-3a+b=-3a+b$
$\Leftrightarrow -4043=-3a+b(2)$
Từ $(1); (2)\Rightarrow a=2022; b=2023$
Vậy đa thức dư là $2022x+2023$
\(f\left(x\right)⋮g\left(x\right)\)
\(\Leftrightarrow x^4-3x^3+4x^2-x^2+3x-4+\left(a-3\right)x+\left(b+4\right)⋮x^2-3x+4\)
\(\Leftrightarrow\left(a,b\right)=\left(3;-4\right)\)
Dúng phương pháp xét giá trị riêng
Gọi dư là \(ax+b\)
Ta có: \(F\left(x\right)=\left(x^2-1\right).Q\left(x\right)+ax+b\)
Do đẳng thức đúng với mọi x nên lần lượt thử \(x=1;x=-1\)
Với x = 1 thay vào đc:
\(51=a+b\) (1)
Với x = -1 thay vào đc:
\(1=-a+b\) (2)
(1) và (2) suy ra x = 25; y = 26
Vậy dư là 25x+26
Vì đa thức chia là đa thức bậc 2 nên đa thức dư sẽ là bậc 1
Gọi thương là \(Q\left(x\right)\)
Gọi số dư là \(R\left(x\right)=ax+b\)
\(\Rightarrow F\left(x\right)=Q\left(x\right).\left(x^2-1\right)+ax+b\)
Xét nghiệm của đa thức chia
\(x^2-1=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Nên ta có hệ phương trình .
\(\left\{{}\begin{matrix}P\left(1\right)=a+b=51\\P\left(-1\right)=-a+b=1\end{matrix}\right.\)
Giải hệ ra ta được :
\(\left\{{}\begin{matrix}a=25\\b=26\end{matrix}\right.\)
Vậy đa thức dư là \(25x+26\)