Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(f\left(x\right)=x^{1996}+x^{196}+x^{19}+x+1\)
Vì đa thức chia là một đa thức bậc hai nên số dư của f(x) khi chia cho (1-x2) sẽ là một đa thức bậc nhất.
Ta có : \(f\left(x\right)=x^{1996}+x^{196}+x^{19}+x+1\)
\(=\left(x^{1996}-x^4\right)+\left(x^{196}-x^4\right)+\left(x^{19}-x^3\right)+\left(2x^4-2\right)+\left(x^3-x\right)+\left(2x+3\right)\)
\(=-x^4\left[1-\left(x^4\right)^{498}\right]-x^4\left[1-\left(x^4\right)^{48}\right]-x^3\left[1-\left(x^4\right)^4\right]-2\left(1-x^4\right)-x\left(1-x^2\right)+\left(2x+3\right)\)
\(=-x^4\left(1-x^4\right).A\left(x\right)-x^4\left(1-x^4\right).B\left(x\right)-x^3\left(1-x^4\right).C\left(x\right)-2\left(1-x^4\right)-x\left(1-x^2\right)+\left(2x+3\right)\)
\(=-x^4\left(1-x^2\right)\left(1+x^2\right).A\left(x\right)-x^4\left(1-x^2\right)\left(1+x^2\right).B\left(x\right)-x^3\left(1-x^2\right)\left(1+x^2\right).C\left(x\right)-2\left(1-x^2\right)\left(1+x^2\right)-x\left(1-x^2\right)+\left(2x+3\right)\)
\(=\left(1-x^2\right)\left[-x^4\left(1+x^2\right).A\left(x\right)-x^4\left(1+x^2\right).B\left(x\right)-x^3\left(1+x^2\right).C\left(x\right)-2\left(1+x^2\right)-x\right]+\left(2x+3\right)\)
Dễ thấy \(\left(1-x^2\right)\left[-x^4\left(1+x^2\right).A\left(x\right)-x^4\left(1+x^2\right).B\left(x\right)-x^3\left(1+x^2\right).C\left(x\right)-2\left(1+x^2\right)-x\right]⋮\left(1-x^2\right)\) và (2x+3) không chia hết cho (1-x2)
Do đó phần dư của f(x) cho (1-x2) chính là 2x+3
<br class="Apple-interchange-newline"><div id="inner-editor"></div>ƒ (x)=x1996+x196+x19+x+1
Vì đa thức chia là một đa thức bậc hai nên số dư của f(x) khi chia cho (1-x2) sẽ là một đa thức bậc nhất.
Ta có : ƒ (x)=x1996+x196+x19+x+1
=(x1996−x4)+(x196−x4)+(x19−x3)+(2x4−2)+(x3−x)+(2x+3)
=−x4[1−(x4)498]−x4[1−(x4)48]−x3[1−(x4)4]−2(1−x4)−x(1−x2)+(2x+3)
=−x4(1−x4).A(x)−x4(1−x4).B(x)−x3(1−x4).C(x)−2(1−x4)−x(1−x2)+(2x+3)
=−x4(1−x2)(1+x2).A(x)−x4(1−x2)(1+x2).B(x)−x3(1−x2)(1+x2).C(x)−2(1−x2)(1+x2)−x(1−x2)+(2x+3)
=(1−x2)[−x4(1+x2).A(x)−x4(1+x2).B(x)−x3(1+x2).C(x)−2(1+x2)−x]+(2x+3)
Dễ thấy (1−x2)[−x4(1+x2).A(x)−x4(1+x2).B(x)−x3(1+x2).C(x)−2(1+x2)−x]⋮(1−x2) và (2x+3) không chia hết cho (1-x2)
Do đó phần dư của f(x) cho (1-x2) chính là 2x+3
Cho hoi dap de hoi chi khong duoc noi lung tung day la pham loi trong hoi dap
Vì đa thức chia bậc 2 nên đa thức dư có bậc 1 và có dạng ax + b
Đặt \(f\left(x\right)=\left(x^2-2x-3\right)O\left(x\right)=\left(x+1\right)\left(x-3\right)O\left(x\right)+ax+b\)(3)
\(f\left(x\right)=\left(x+1\right)Q\left(x\right)-45\) (1)
\(f\left(x\right)=\left(x-3\right)H\left(x\right)-165\) (2)
Thay lần lượt x = -1 và x = 3 vào (1) và (2), ta có:
\(\hept{\begin{cases}f\left(-1\right)=-45\\f\left(3\right)=-165\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}-a+b=-45\\3a+b=-165\end{cases}}\)(dựa vào (3))
\(\Rightarrow\hept{\begin{cases}4a=-120\\-a+b=-45\end{cases}\Rightarrow}\hept{\begin{cases}a=-30\\-\left(-30\right)+b=-45\end{cases}\Rightarrow}\hept{\begin{cases}a=-30\\b=-75\end{cases}}\)
Vậy f(x) chia \(x^2-2x-3\)dư \(ax+b=-30x-75\)
Chúc bạn học tốt.