Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
Ta gọi chiều cao của ba cạnh là: x, y, z (x, y, z > 0)
Vì chiều cao tỉ lệ nghịch với \(\frac{1}{3};\frac{1}{4};\frac{1}{5}\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(x+y+z=70,5\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{70,5}{12}=\frac{47}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{141}{8}\\y=\frac{47}{2}\\z=\frac{235}{8}\end{cases}}\)
Gọi độ dài 3 cạnh của tam giác lần lượt là x; y; z
Ta có: \(S=\frac{1}{2}x.\frac{1}{3}=\frac{1}{2}y.\frac{1}{4}=\frac{1}{2}z.\frac{1}{5}\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{70,5}{12}=5,875\)
\(\Rightarrow\hept{\begin{cases}3.5,875=17,625\\4.5,875=23,5\\5.8,75=29,375\end{cases}}\)
=> độ dài lần lượt là: 17,625; 23,5; 29,375
Gọi độ dài mỗi cạnh tam giác là a,b,c(a,b,c>0)
Theo bài ra ta có:\(\left\{{}\begin{matrix}a+b+c=56,4\\\dfrac{a}{\dfrac{1}{\dfrac{1}{3}}}=\dfrac{b}{\dfrac{1}{0,25}}=\dfrac{c}{\dfrac{1}{0,2}}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=56,4\\\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\end{matrix}\right.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{56,4}{12}=4,7\)
\(\dfrac{a}{3}=4,7\Rightarrow a=14,1\\ \dfrac{b}{4}=4,7\Rightarrow b=18,8\\ \dfrac{c}{5}=4,7\Rightarrow c=23,5\)
Vậy ...
Gọi độ dãi mỗi cạnh của tam giác là: a,b,c tỉ lệ với \(\frac{1}{3};0,25;0,2\) => \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{5}}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{5}}=\frac{a+b+c}{\frac{1}{3}+\frac{1}{4}+\frac{1}{5}}=\frac{56,4}{\frac{47}{60}}=72\)
=> \(\begin{cases}a=24\\b=18\\c=\frac{72}{15}\end{cases}\)
nit mù tịt đầu óc hột vịt lộn, ng ta cho độ dài các đg cao.....
Lười lắm hướng dẫn giải thôi
gọi 3 cạnh đó là x;y;z ( x;y;z >0 , cm)
vì ba đường cao của tam giác tỉ lệ nghịch với 5;7;8
=> x.5=y.7=z.8
=> \(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{7}}=\frac{z}{\frac{1}{8}}\)
áp dụng t/c dãy tỉ số = nhau rồi cộng 3 cái lại xét x= ? ; y=? ; z=?
cho mình hỏi đề bài người ta nói mình tìm độ dài của 3 cạnh chứ ko phải tìm đường cao