K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 7 2021

ĐKXĐ: \(\left\{{}\begin{matrix}2x-1\ge0\\x+2>0\\3-x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x>-2\\x\le3\end{matrix}\right.\) 

\(\Rightarrow\dfrac{1}{2}\le x\le3\)

7 tháng 1 2021

x∈[0, ∞)

10 tháng 6 2021

a) Biểu thức xác định `<=> x^2-2x-1>0`

`<=>(x^2-2x+1)-2>0`

`<=>(x-1)^2-(\sqrt2)^2>0`

`<=>(x-1+\sqrt2)(x-1-\sqrt2)>0`

`<=>` \(\left[{}\begin{matrix}x< 1-\sqrt{2}\\x>1+\sqrt{2}\end{matrix}\right.\)

`D=(-∞; 1-\sqrt2) \cup (1+\sqrt2 ; +∞)`

b) Biểu thức xác định `<=> x-\sqrt(2x+1)>0`

`<=> x>\sqrt(2x+1)`

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\2x+1\ge0\\x^2>2x+1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ge-\dfrac{1}{2}\\\left[{}\begin{matrix}x< 1-\sqrt{2}\\x>1+\sqrt{2}\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow x>1+\sqrt{2}\)

`D=(1+\sqrt2 ; +∞)`

31 tháng 10 2021

\(1,\\ a,ĐK:\left\{{}\begin{matrix}x\ge0\\x+5\ge0\end{matrix}\right.\Leftrightarrow x\ge0\\ b,Sửa:B=\left(\sqrt{3}-1\right)^2+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+\dfrac{2\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+2\sqrt{3}=4\\ 3,\\ =\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}\right]\cdot\dfrac{\sqrt{x}-3+2-2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\left(1-\sqrt{x}\right)\cdot\dfrac{-\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\dfrac{-\sqrt{x}-1}{\sqrt{x}-3}-2=\dfrac{-\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{-3\sqrt{x}+5}{\sqrt{x}-3}\)

11 tháng 10 2021

\(a,ĐK:x\ne4;x\ge3\\ b,ĐK:x\ge1\)

a) ĐKXĐ: \(\left[{}\begin{matrix}x\ge\dfrac{5}{2}\\x< -2\end{matrix}\right.\)

b) ĐKXĐ: \(-\sqrt{2}\le x\le\sqrt{2}\)

c) ĐKXĐ: \(x\ge1\)

23 tháng 10 2021

a: ĐKXĐ: \(x\ge1\)

b: ĐKXĐ: \(x< 0\)

c: ĐKXĐ: \(\left[{}\begin{matrix}x\ge11\\x\le3\end{matrix}\right.\)

23 tháng 10 2021

1) ĐKXĐ: \(\left\{{}\begin{matrix}2x+11\ge0\\x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow x\ge1\)

2) ĐKXĐ: \(\left\{{}\begin{matrix}-5x\ge0\\x\ne0\end{matrix}\right.\)\(\Leftrightarrow x< 0\)

3) ĐKXĐ: \(7x^2+1\ge0\left(đúng\forall x\right)\Leftrightarrow x\in R\)

4) ĐKXĐ: \(x^2-14x+33\ge0\Leftrightarrow\left(x-11\right)\left(x-3\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-11\ge0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-11\le0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge11\\x\le3\end{matrix}\right.\)

5) ĐKXĐ: 

+) \(-x^2+6x+16\ge0\)

\(\Leftrightarrow-\left(x^2-6x+9\right)+25\ge0\)

\(\Leftrightarrow\left(x-3\right)^2\le25\Leftrightarrow-5\le x-3\le5\)

\(\Leftrightarrow-2\le x\le8\)

+) \(3x^2\ne0\Leftrightarrow x\ne0\)

\(\Rightarrow\left\{{}\begin{matrix}-2\le x\le8\\x\ne0\end{matrix}\right.\)

 

Bài 2: 

Ta có: \(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)

\(=\dfrac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}-2}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}-2}{\sqrt{2}}=\sqrt{2}\)

ĐKXĐ: \(x\ge0;x\ne1\)

Ta có: \(A=\left(2+\dfrac{2x+\sqrt{x}}{2\sqrt{x}+1}\right)\left(2-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)

\(A=\left(2+\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{2\sqrt{x}+1}\right)\left(2-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)

\(A=\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)=4-x\)