Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu có P => Q thì ta gọi P là điều kiện cần của Q và đồng thời Q cũng là điều kiện đủ của P
Ta gọi mệnh đề P : a và b - chúng đều là 2 số hữu tỉ, Q : tổng a + b là số hữu tỉ
Mệnh đề ở gt : P => Q
Mệnh đề A : P => Q
Mệnh đề B : Q => P
Mệnh đề C : Q => P
Mệnh đề D : A,B,C đều sai
=> Do đó chúng ta chọn đáp án A là hợp lí nhất.
\(\Leftrightarrow x^3-6x^2+11x-m=0\) (1) có 3 nghiệm pb \(x=\left\{a;b;c\right\}\)
Theo định lý Viet:
\(\left\{{}\begin{matrix}a+b+c=6\\ab+bc+ca=11\\abc=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2b+b=6\\b\left(a+c\right)+ac=11\\abc=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=2\\2b^2+ac=11\\m=abc\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=2\\ac=11-2b^2=3\\m=b.ac=2.3=6\end{matrix}\right.\)
Vậy \(m=6\)
áp dụng bất đẳng thức cauchy schwarz
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}=\frac{9}{2\cdot1}=\frac{9}{2}>4\)
suy ra điều phải chứng minh
Cách 2:
VT=\(\frac{1}{1-c}+\frac{1}{1-b}+\frac{1}{1-a}\)\(\ge\frac{3}{\sqrt[3]{\left(1-a\right)\left(1-b\right)\left(1-c\right)}}\)
mà \(\sqrt[3]{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\le\frac{3-\left(a+b+c\right)}{3}\)\(=\frac{2}{3}\)
=>\(VT\ge\frac{3}{\frac{2}{3}}=\frac{9}{2}>4\)
Ta đổi chiều bất đẳng thức, khi đó bất đẳng thức cần chứng minh tương đương với:
\(18\left(\frac{a^3}{1+a^3}+\frac{b^3}{1+b^3}+\frac{c^3}{1+c^3}\right)+\left(a+b+c\right)^3\ge54\)
Để ý abc=1 thì \(\frac{a^3}{1+a^3}=\frac{a^3}{abc+a^3}=\frac{a^2}{bc+a^2}\)nên bất đẳng thức trên thành:
\(18\left(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\right)+\left(a+b+c\right)^3\ge54\)
Lại cũng từ \(abc=1\) ta có \(\left(a+b+c\right)^3\ge27abc=27\), do đó ta sẽ chứng minh được khi ta chỉ ra được:
\(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\ge\frac{3}{2}\)
Vế trái của đánh giá trên áp dụng bất đẳng thức Bunhiacopxki dạng phân thức. Lúc này ta được:
\(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)
Tuy nhiên để đến khi \(a=b=c=1\) thì:
\(\frac{18\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}=\left(a+b+c\right)^3=27\)
Ta sử dụng bất đẳng thức Cauchy dạng \(x+y\ge2\sqrt{xy}\), khi đó ta được:
\(\frac{18\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}+\left(a+b+c\right)^3\ge\sqrt{\frac{18\left(a+b+c\right)^5}{a^2+b^2+c^2+ab+bc+ca}}\)
Chứng minh sẽ hoàn tất nếu ta chỉ được:
\(\sqrt{\frac{18\left(a+b+c\right)^5}{a^2+b^2+c^2+ab+bc+ca}}\ge54\Leftrightarrow\left(a+b+c\right)^5\ge\frac{81}{2}\left(a^2+b^2+c^2+ab+bc+ca\right)\)
Vậy theo bất đẳng thức Cauchy ta được:
\(\left(a+b+c\right)^6=\left[\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)+\left(ab+bc+ca\right)\right]^3\)
\(\ge27\left(a+b+c\right)^2\left(ab+bc+ca\right)^2\ge81abc\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)
\(=81\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)
Khi đó ta được:
\(\left(a+b+c\right)^5\ge81\left(a^2+b^2+c^2\right)\)
Vậy ta cần chỉ ra rằng:
\(2\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+ab+bc+ca\)
Vậy bất đẳng thức trên tương đương với \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\), là một bất đẳng thức hiển nhiên đúng.
Vậy bất đẳng thức được chứng minh, dấu đẳng thức xảy ra khi \(a=b=c=1\)
1)
\(\frac{a}{b}=\frac{a+c}{b+c}\)
Áp dụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{a}{b}=\frac{a+c}{b+c}=\frac{\left(a+c\right)-a}{\left(b+c\right)-b}=\frac{c}{c}=1\)
=>\(\frac{a}{b}=1\)
Vậy diều kiên của a/b là \(\frac{a}{b}=1\)
2)
Sửa đề thành
\(\frac{a}{b}=\frac{a+x}{b+y}\)
Áp dụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{a}{b}=\frac{a+x}{b+y}=\frac{\left(a+x\right)-a}{\left(b+y\right)-b}=\frac{x}{y}\)
Vậy để \(\frac{a}{b}=\frac{a+x}{b+y}\) thì \(\frac{x}{y}=\frac{a}{b}\)