K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

 1. Xét n chẵn, hai số đều chẵn => ko nguyên tố cùng nhau 
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau 
9n+24 = 3(3n+8) 
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8 
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a) 
=> k cũng là ước số của (3n+8)-(3n+4) = 4 => k chẵn (b) 
Từ (a) và (b) => Mâu thuẫn 
Vậy với n lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

20 tháng 3 2016

mình nghĩ là ko có số nào cả xin lỗi nhé

26 tháng 12 2021

Có số mà bạn

26 tháng 11 2014

1. Xét n chẵn, hai số đều chẵn => ko nguyên tố cùng nhau
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau
9n+24 = 3(3n+8)
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a)
=> k cũng là ước số của (3n+8)-(3n+4) = 4 => k chẵn (b)
Từ (a) và (b) => Mâu thuẫn
Vậy với n lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau

7 tháng 3 2017

nhung vi sao co 3n+4

NM
14 tháng 1 2022

ta có : 

\(9n+24-3\times\left(3n+4\right)=12\)

vậy 9n+24 và 3n +4 nguyên tố cùng nhau khi 12 và 3n+4 nguyên tố cùng nhau.

3n+4 không chia hết cho 3 và 4 thì điều kiện cần và đủ là n lẻ

vậy với mọi n lẻ ta luôn có 9n+24 và 3n+4 là nguyên tố cùng nhau

9 tháng 12 2015

1. Xét n chẵn, hai số đều chẵn => ko nguyên tố cùng nhau 
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau 
9n+24 = 3(3n+8) 
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8 
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a) 
=> k cũng là ước số của (3n+8)-(3n+4) = 4 => k chẵn (b) 
Từ (a) và (b) => Mâu thuẫn 
Vậy với n lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau

9 tháng 12 2015

ai trình bày bài bản tớ sẽ tick choa!

14 tháng 12 2016

a, gọi ước chung lơn nhất của .... là d

4n+3 chia hết cho d

2n+ 3 chia hết cho d

=> 2(2n+3) chia hết cho d

=> 4n+5 chia hết cho d

=> (4n+5)-(4n+3) chia hết cho d

=> 2 chia hết cho d

=> d= 1,2

mà 2n+3 là số lẻ ( ko chia hết cho 2)

=> d= 1

vây ......

20 tháng 12 2020

sai đề bạn ơ

27 tháng 11 2016

1.c)1. Xét nn chẵn, hai số đều chẵn →→ không nguyên tố cùng nhau 
2.2. Xét nn lẻ, ta chứng minh 22 số này luôn nguyên tố cùng nhau 
9n+24=3(3n+8)9n+24=3(3n+8) 
Vì 3n+43n+4 không chia hết cho 33, nên ta xét tiếp 3n+83n+8 
Giả sử kk là ước số của 3n+83n+8 và 3n+43n+4, đương nhiên kk lẻ (a)(a) 
→k→k cũng là ước số của (3n+8)−(3n+4)=4→k(3n+8)−(3n+4)=4→k chẵn (b)(b) 
Từ (a)(a) và (b)→(b)→ Mâu thuẫn 
Vậy với nn lẻ, 22 số đã cho luôn luôn nguyên tố cùng nhau