Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1:
\(f\left(x\right)=\left(x^2-7x\right)\left(4x^3-2x^2-5x\right)=4x^5-30x^4+9x^3+35x^2\)
\(f'\left(x\right)=20x^4-120x^3+27x^2+70x\)
Cách 2:
\(f\left(x\right)=\left(x^2-7x\right)\left(4x^3-2x^2-5x\right)\)
\(f'\left(x\right)=\left(x^2-7x\right)'\left(4x^3-2x^2-5x\right)+\left(x^2-7x\right)\left(4x^3-2x^2-5x\right)'\)
\(f'\left(x\right)=\left(2x-7\right)\left(4x^3-2x^2-5x\right)+\left(x^2-7x\right)\left(12x^2-4x-5\right)\)
Bla bla.... Tự tách ra
\(f'\left(x\right)=20x^4-120x^3+27x^2+70\)
a) = = .
b) = = .
c) = = .
d) y' =\(\dfrac{\left(x^2+7x+3\right)'\left(x^2-3x\right)-\left(x^2+7x+3\right)\left(x^2-3x\right)'}{\left(x^2-3x\right)^2}\)=\(\dfrac{\left(2x+7\right)\left(x^2-3x\right)-\left(x^2+7x+3\right)\left(2x-3\right)}{\left(x^2-3x\right)^2}\)=\(\dfrac{-2x^2-6x+9}{\left(x^2-3x\right)^2}\)