K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2018

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{667}{668}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{667}{668}\)

\(1-\frac{1}{x+1}=\frac{667}{668}\)

\(\frac{1}{x+1}=1-\frac{667}{668}\)

\(\frac{1}{x+1}=\frac{1}{668}\)

\(\Rightarrow x+1=668\)

x = 667

3 tháng 7 2018

a) 1/1x2 + 1/2x3 + 1/3x4 + ... + 1/x.(x+1) = 667/668

=>1/1-1/2+1/2-1/3+1/3-1/4+.......+1/x-1/x+1=667/668

=>1/1-1/x+1=667/668

=>1/x+1=1/1-667/668

=>1/x+1=1/668

=>x=667

15 tháng 3 2021

\(\frac{2019}{1\times2}+\frac{2019}{2\times3}+\frac{2019}{3\times4}+...+\frac{2019}{2018\times2019}\)

\(=2019\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2018\times2019}\right)\)

\(=2019\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)

\(=2019\left(1-\frac{1}{2019}\right)\)

\(=2019\left(\frac{2019}{2019}-\frac{1}{2019}\right)\)

\(=2019\times\frac{2018}{2019}\)\(=\frac{2019\times2018}{2019}=2018\)

25 tháng 7 2015

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{x\left(x+1\right)}=\frac{99}{100}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{x}-\frac{1}{x+1}=\frac{99}{100}\)

\(1-\frac{1}{x+1}=\frac{99}{100}\)

=> \(\frac{1}{x+1}=1-\frac{99}{100}=\frac{1}{100}\)

=> x+1 = 100

=> x = 100 - 1 

=> x = 99

25 tháng 7 2015

mơ đi Nguyễn Đình Dũng

13 tháng 7 2016

1/1x2 + 1/2x3 + 1/3x4 + ... + 1/24x25

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/24 - 1/125

= 1 - 1/25

= 24/25

13 tháng 7 2016

1/1x2 + 1/2x3 + 1/ 3x4 +.....+ 1/24x25
= ( 1- 1/2) + (1/2-1/3) + (1/3 - 1/4)+........+ (1/24-1/25)
= 1-1/2+1/2-1/3+1/3-1/4+.........+1/24-1/25
= 1- 1/25 = 24/25

7 tháng 8 2020

Ta có :\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2008.2009}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)

\(=1-\frac{1}{2009}=\frac{2008}{2009}\)

7 tháng 8 2020

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2008\cdot2009}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)

\(=\frac{1}{1}-\frac{1}{2009}=\frac{2008}{2009}\)

7 tháng 4 2022

1/1.2 +1/2.3 +1/3.4 +....+1/99.100

=1-1/2+1/2-1/3+1/3-14+.....+1/99-1/100

=1-1/100

=99/100

7 tháng 4 2022

e ko cop đâu nhé e lớp 6 câu nay e làm đc ạ !

23 tháng 4 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(=1-\frac{1}{2006}\)

\(=\frac{2005}{2006}\)

23 tháng 4 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(1-\frac{1}{2006}\)

\(\frac{2005}{2006}\)

24 tháng 7 2017

A=1/1x2+1/2x3+...+1/99x100

A=1-1/2+1/2-1/3+1/3-...+1/99-1/00

A=1-1/100

A=99/100