Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2+22+23+...+220A=2+22+23+...+220
2A=22+23+24+...+2212A=22+23+24+...+221
2A−A=(22+23+24+...+221)−(2+22+23+...+220)2A−A=(22+23+24+...+221)−(2+22+23+...+220)
A=221−2=24.5+1−2=(24)5.2−2=165.2−2A=221−2=24.5+1−2=(24)5.2−2=165.2−2
A=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯.......6.2−2=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯........2−2=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯...........0A=.......6¯.2−2=........2¯−2=...........0¯
Vậy chữ số tận cùng cả A là 0
Lời giải:
$S=(2+2^2)+(2^3+2^4)+....+(2^{23}+2^{24})$
$=2(1+2)+2^3(1+2)+....+2^{23}(1+2)$
$=(1+2)(2+2^3+...+2^{23})$
$=3(2+2^3+...+2^{23})\vdots 3$
b.
$S=2+2^2+2^3+...+2^{23}+2^{24}$
$2S=2^2+2^3+2^4+....+2^{24}+2^{25}$
$\Rightarrow 2S-S=2^{25}-2$
$\Rightarrow S=2^{25}-2$
Ta có:
$2^{10}=1024=10k+4$
$\Rightarrow 2^{25}-2=2^5.2^{20}-2=32(10k+4)^2-2=32(100k^2+80k+16)-2$
$=10(320k^2+8k+51)\vdots 10$
$\Rightarrow S$ tận cùng là $0$
Ta có: 2 + 22 + 23 + ... + 220
= (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (217 + 218 + 219 + 220)
= (2 + 22 + 23 + 24) + 24(2 + 22 + 23 + 24) + 28(2 + 22 + 23 + 24) + 216(2 + 22 + 23 + 24)
= (1 + 24 + 28 + 216)(2 + 22 + 23 + 24)
= 30(2 + 22 + 23 + 24)
Vì 30 có tận cùng là 0 nên 30(2 + 22 + 23 + 24) có tận cùng là 0
hay 2 + 22 + 23 + ... + 220 có tận cùng là 0
Chúc bn học tốt!
Đặt A = 22 + 23 + 24 + .... + 22019
=> 2A = 23 + 24 + 25 + .... + 22020
=> 2A - A = (23 + 24 + 25 + .... + 22020) - (22 + 23 + 24 + .... + 22019)
A = 22020 - 22
Lại có A = (24)505 - 4 = (...6)505 - 4 = (...6) - 4 = ...2
Khi đó S = 32019 - (....2)
= 32016.33 - (...2)
= (34)504.27 - (....2)
= (...1)504.27 - (...2)
= (...7) - (....2)
= ....5
Vậy chữ số tận cùng của S là 5
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1
\(A=2+2^2+2^3+...+2^{2019}\)
\(2A=2^2+2^3+2^4+...+2^{2020}\)
=> \(2A-A=2^{2020}-2\)=> \(A=2^{2020}-2\)
Ta có: \(3^{2k}=9^k\)Nếu k lẻ thì \(9^k\)có số tận cùng là 9; còn k chắn thì \(9^k\)có số tận cùng là 1
=> \(3^{2019}=3^{2018}.3=9^{1009}.3\)có số tận cùng là số tận cùng của 9.3 là số 7
\(2^{2k}=4^k\)Nếu k lẻ thì \(4^k\)có số tận cùng là 4; còn k chẵn thì \(4^k\)có số tận cùng là 6
=> \(2^{2020}=4^{1010}\) có số tận cùng là 6
Vậy S = \(3^{2019}+A=3^{2019}+2^{2020}-2\) có số tận cùng là số tận cùng của số 7 + 6 - 2 là số 1
S = 3^2019 + 2 + 2^2 + 2^3 + ... + 2^2019
Đặt : 3^2019 là A
2 + 2^2 + 2^3 + 2^4 + ... + 2^2019 là B
S = A + B
A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^2019
=> 2A = 2^2 + 2^3 + 2^4 + 2^5 + ... + 2^2020
=> 2A - A = A = 2^2020 - 2
A = ...4 - 2 = ...2
B = 3^2019 = ...7
S = A + B = ...2 + ...7 = ...9
Vậy chữ số tận cùng của tổng S là 9