Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
21993 = 2.21992 = 2.4996 = ...............6.2 =..........2
tận cùng =2
a) Ta thấy 11! = 1 . 2 . ... 10 . 11 có thừa số 10 nên có tận cùng là 0
tương tự 17! = 1 . 2 ... 10 ... 17 có thừa số 10 nên có tận cùng là 0
b) tích 2 . 4 . 6 ... 98 có tận cùng là 0
tích 1 . 3 . 5 . 7 ... 99 có tận cùng là 0
suy ra : 2 . 4 . 6 ... 98 + 1 . 3 . 5 . 7 ... 99 có tận cùng là 5
a, chữ số tận cùng của 11!=0 ; 17!=0
b, tận cùng của tổng là 5
3.
Ta có :
A = 999999999982
= (99999999998 + 2)(99999999998 - 2) + 4
= 100 000 000 000 x 99999999996 + 4
= 99999999996000000000004
Từ đó ta có tổng các chữ số của A là
9 x 10 + 6 + 4 = 100.
tick đúg cho mình nha
1.
do tích các số lẻ có tận cùng là 7 nên trong các số đó, không có số nào tận cùng bằng 5
vậy nó có thể tận cùng bằng 3,1,7,9
mà đó là tích các số lẻ liên tiếp nên tích đó có thể có 3(tận cùng bằng 9,3,1 ), hoặc 4 ( tận cùng bằng 1,3,7,9)
tích trên không thể có 2 thừa số vì nếu có 2 thừa số thì chúng phải tận cùng băng 9,3 hoặc 1,7. mà các số tận cùng như trên không phải là các số lẻ liên tiếp
A = 20 + 21 + 22 + ... + 22005
2A = 21 + 22 + 23 + ... + 22006
2A - A = (21 + 22 + 23 + ... + 22006) - (20 + 21 + 22 + ... + 22005)
A = 22006 - 20
A = 22006 - 1
A = 22004.22 - 1
A = (24)501.4 - 1
A = (...6)501.4 - 1
A = (...6).4 - 1
A = (...4) - 1
A = (...3)
\(A=2^0+2^1+2^2+...+2^{2005}\)
=>\(2A=2+2^2+2^3+...+2^{2006}\)
=>\(2A-A=\left(2+2^2+2^3+...+2^{2006}\right)-\left(2^0+2+2^2+...+2^{2005}\right)\)
=>\(A=2^{2006}-1\)
A=22006-1=(22)1003-1=41003-1=...4-1=...3 (chỗ này lưu ý: 4 mũ lẻ thì có tận cùng là 4)
Vậy A có tận cùng là 3
2^1993= 2^4.498 . 2= 6^k . 2
=> tận cùng 2
3^2015= 3^4.503 . 3^3= 1^k .8
=> tận cùng là 8
7^1000= 7^4.250= 1^k
=> tận cùng 1
39^751= 9^4.187. 9^3= 1^k . 729
=> tận cùng là 729