Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-4xy+4y^2+y^2+2y+1-4=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Nếu \(y< -3\Rightarrow y+1< -2\Rightarrow\left(y+1\right)^2>4\Rightarrow VT>VP\) (ktm)
\(\Rightarrow y\ge-3\Rightarrow y_{min}=-3\)
\(\Rightarrow\left(x+6\right)^2+4=4\Rightarrow x=-6\)
Vậy \(\left\{{}\begin{matrix}x=-6\\y=-3\end{matrix}\right.\)
( x - 2y )2 + ( y + 1 )2 = 4 mà ( x - 2y ) 2 ≥ 0 ⇒ 4 - ( y + 1 ) 2 ≥ 0 ⇔ - ( y + 3 )( y - 1 ) ≥ 0 chia TH rồi ⇒ y ≥ -3 ymin = -3 ⇒ x = -6
tìm tất cả các cặp số thực (x;y) sao cho y là số nhỏ nhất thoả mãn điều kiện \(x^2+5y^2+2y+4xy-3=0\)
\(x^2+5y^2+2y=4xy+3\)
\(\Leftrightarrow x^2-4xy+5y^2+2y-3=0\) \(\left(a=1,b'=-2y,c=5y^2+2y-3\right)\)
Ta có: \(\Delta'=b'^2-ac=\left(-2y\right)^2-1\left(5y^2+2y-3\right)=4y^2-5y^2-2y+3=-y^2-2y+3\)
PT có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow-y^2-2y+3\ge0\Leftrightarrow y^2+2y-3\le0\Leftrightarrow\left(y+1\right)^2-4\le0\Leftrightarrow\left(y+1\right)^2\le4\)
\(\Leftrightarrow-2\le y+1\le2\Leftrightarrow-3\le y\le1\)
Từ đó, ta có: \(y_{min}=-3\), thay vào PT trên, ta có: \(\Delta'=0\)
PT trên có nghiệm kép: \(x=\frac{-b'}{a}=\frac{2y}{1}=2\cdot\left(-3\right)=-6\)
Vậy \(\left(-6;-3\right)\) là cặp số \(\left(x;y\right)\) sao cho y nhỏ nhất thoả mãn điều kiện trên.
\(x^2+5y^2+2y-4xy-3=0\)
\(x^2-4xy+4y^2+y^2+2y+1-4=0\)
\(\left(x-2y\right)^2+\left(y+1\right)^2-4=0\)
Vì \(\left(x-2y\right)^2\) lớn hơn hoặc bằng 0
và \(\left(y+1\right)^2\) lớn hơn hoặc bằng 0
Nên \(\left(x-2y\right)^2+\left(y+1\right)^2-4\) lớn hơn hoặc bằng -4
nên GTNN là -4
ban đầu m cũng làm giống bạn, nhưng đọc lại đề bài m cảm thấy khó hiểu : tìm X để cho Y thỏa mãn
đề m thi HK2 ấy
pt <=> 9x^2+3y^2+12xy+12x+6y+15 = 0
<=> [(9x^2+12xy+4y^2)+2.(3x+2y).2+4] - (y^2+2y+1) + 12 = 0
<=> [(3x+2y)^2+2.(3x+2y).2+4] -(y+1)^2 = -12
<=> (3x+2y+2)^2 - (y+1)^2 = -12
<=> (3x+2y+2+y+1).(3x+2y+2-y-1) = -12
<=> (3x+3y+3).(3x+y+1) = -12
<=> (x+y+1).(3x+y+1) = -4
Đến đó bạn dùng quan hệ ước bội cho các số nguyên mà giải nha !
Tk mk nha
\(x^2+5y^2+2y-4xy-3=0\)
=>\(\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\)
=>\(\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Gợi ý tới đây bn giải tiếp đi
Mk chưa học lớp 9 nên ko giải đc
- Mình cảm ơn nhiều