Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{25}{5}=5\)
Do đó: x=40; y=60; z=75
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=\frac{x+y+z}{3+4+6}=\frac{52}{13}=4\)
\(\Rightarrow\frac{x}{3}=4\Rightarrow x=12\)
\(\frac{y}{4}=4\Rightarrow y=16\)
\(\frac{z}{6}=4\Rightarrow z=24\)
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
a Ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\left(2\right)\)
Từ (1);(2) => \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> x = 2 x 10 = 20
y = 2 x 15 = 30
z = 2 x 21 = 42
b) Đặt \(\frac{x}{2}=\frac{y}{3}=k\)
=> x = 2k ; y = 3k
=> xy = 6.k2
=> 54 = 6.k2
=> k2 = 54 : 6 = 9
=> k = 3 hoặc k = -3
=> x = 3 x 2=6 hoặc x =( -3) x 2 = -6
y = 3 x 3 = 9 hoặc y = (-3) x 3 = -9
\(\text{a,Ta có:}\)\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\) \(\text{và}\)\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
\(\text{Áp dụng tính chất DTSBN có}\)
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\text{Suy ra}:x=2.10=20;y=2.15=30;z=2.21=42\)
\(\text{Vậy }x=20;y=30;z=42\)
\(\text{b, Đặt }\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k;y=3k\)
\(\text{Theo đề, ta có}\)
\(xy=54\Rightarrow2k.3k=54\Rightarrow6k^2=54\Rightarrow k^2=9\Rightarrow k=3\text{hoặc }k=-3\)
\(\text{Suy ra: }x=2.3=6\text{hoặc}x=2.\left(-3\right)=-6\) \(y=3.3=9\text{ hoặc }y=-3.3=-9\)
\(\text{Vậy với k=3 }\Rightarrow x=6;y=9\)
\(\text{với k=-3\Rightarrow x=-6;y=-9}\)
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
Áp dụng t/c dtsbn:
\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{x+y-z}{6+5-3}=\dfrac{54}{8}=\dfrac{27}{4}\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{81}{2}\\y=\dfrac{135}{4}\\z=\dfrac{81}{4}\end{matrix}\right.\)
áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{x+y-z}{6+5-3}=\dfrac{54}{8}\)
Vậy x=\(\dfrac{54}{8}.6\)=\(\dfrac{81}{2}\)
y=\(\dfrac{54}{8}.5=\dfrac{135}{4}\)
z=\(\dfrac{54}{8}.3=\dfrac{81}{4}\)