Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong de thi hsg cap Thanh pho Ha Noi 2016-2017 co dap an do ban
đầu tiên ta chứng minh với x,y,z,t bất kì thì:
\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\) (*)
thật vậy bđt (*) tương đương với:
\(x^2+y^2+z^2+t^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge x^2+2xz+z^2+y^2+2yt+t^2\)
\(\Leftrightarrow\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge xz+yt\)
bđt trên đúng vì theo bđt bunhia cốp xki
\(\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge\sqrt{\left(xz+yt\right)^2}=|xz+yt|\ge xz+yt\)
Áp dụng (*) ta có:
\(P=\sqrt{4+x^4}+\sqrt{4+y^4}+\sqrt{4+z^4}\ge\sqrt{\left(2+2\right)^2+\left(x^2+y^2\right)^2}+\sqrt{4+z^2}\)
\(\ge\sqrt{\left(2+2+2\right)^2+\left(x^2+y^2+z^2\right)^2}=\sqrt{36+\left(x^2+y^2+z^2\right)^2}\)
Ta có:
\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2+\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Rightarrow3x^2+3y^2+3z^2+3\ge2x+2y+2z+2xy+2yz+2zx=2.6=12\)
\(\Rightarrow x^2+y^2+z^2\ge3\Rightarrow P\ge\sqrt{36+3}=3\sqrt{5}\)
Dấu bằng xảy ra khi x=y=z=1
+ Với x = 0, ta có: 30 + 7 = y2
=> 1 + 7 = y2 = 8, không tìm được giá trị x là số tự nhiên thỏa mãn đề bài
+ Với x = 1, ta có: 31 + 7 = y2
=> 3 + 7 = y2 = 10, không tìm được giá trị x là số tự nhiên thỏa mãn đề bài
+ Với x > 1, ta có: 3x + 7 = y2
3x + 6 = y2 - 1
3.(3x-1 + 2) = (y - 1).(y + 1)
Mà (3; 3x-1 + 2)=1 với x > 1 và y - 1 < y + 1 => y - 1 = 3; 3x-1 + 2 = y + 1
=> y = 4; 3x-1 + 2 = 5
=> y = 4; 3x-1 = 3
=> y = 4; x - 1 = 1
=> y = 4; x = 2
Vậy x = 2; y = 4
Ta có:
\(x^{10}+x^{10}+x^{10}+x^{10}+2^{10}\ge5\sqrt[5]{2^{10}.x^{40}}=20x^8\)
Tương tự với y, z thì ta có:
\(\Rightarrow4\left(x^{10}+y^{10}+z^{10}\right)+3.2^{10}\ge20\left(x^8+y^8+z^8\right)\)
Tới đây thì suy ra rồi nhé.
\(x^8+y^8+z^8\le768\)
Đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)\rightarrow\left(a;b;c\right)\Rightarrow\hept{\begin{cases}a+b+c=1\\a;b;c>0\end{cases}}\)
Và \(\frac{ab}{\sqrt{a^2+b^2+2c^2}}+\frac{bc}{\sqrt{b^2+c^2+2a^2}}+\frac{ca}{\sqrt{c^2+a^2+2b^2}}\le\frac{1}{2}\)
Ta có :
\(\frac{ab}{a^2+b^2+2c^2}=\frac{2ab}{\sqrt{\left(1+1+2\right)\left(a^2+b^2+2c^2\right)}}\)
\(\le\frac{2ab}{a+b+2c}\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)
Tương tự cho 2 BĐT còn lại roouf cộng theo vế :
\(VT\le\frac{1}{2}\left(\frac{ab+bc}{a+c}+\frac{ab+ac}{b+c}+\frac{bc+ac}{a+b}\right)=\frac{1}{2}\left(a+b+c\right)=\frac{1}{2}\)
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\Rightarrow x=y=z=\frac{1}{9}\)
Chúc bạn học tốt !!!