Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn xem tại đây: http://olm.vn/hoi-dap/question/119886.html
\(\frac{a}{b}=\frac{c}{d}=>ad=bc=>\frac{a}{c}=\frac{b}{d}=>\frac{2014.a}{2014c}=\frac{2015b}{2015d}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{2014a}{2014c}=\frac{2015b}{2015d}=\frac{2014a-2015b}{2014c-2015d}=\frac{2014a+2015b}{2014c+2015d}\)
=>\(\frac{2014a-2015b}{2014c-2015d}=\frac{2014a+2015b}{2014c+2015d}\)
=> (2014a-2015b).(2014c+2015d)=(2014c-2015d).(2014a+2015b)
=>\(\frac{2014a-2015b}{2014a+2015b}=\frac{2014c-2015d}{2014c+2015d}\)
Theo đề bài 2014a + 3b + 1 và 2014a + 2014a + b là 2 số lẻ.
Nếu a 0 2014a + 2014a là số chẵn
để 2014a + 2014a + b lẻ b lẻ
Nếu b lẻ 3b + 1 chẵn do đó
2014a + 3b + 1 chẵn (không thoả mãn)
Vậy a = 0
Với a = 0 (3b + 1)(b + 1) = 225
Vì b N (3b + 1)(b + 1) = 3.75 = 5. 45 = 9.25 = 1.225
3b + 1 không chia hết cho 3 và 3b + 1 > b + 1
Vậy a = 0 ; b = 8.
Từ \(\dfrac{ab}{2014}=\dfrac{1}{c}\Rightarrow abc=2014\) thay vào \(A\) ta có:
\(A=\dfrac{abc\cdot a}{ab+abc\cdot a+abc}+\dfrac{b}{bc+b+abc}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{a^2bc}{ab+a^2bc+abc}+\dfrac{b}{b\left(ac+c+1\right)}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{ac\cdot ab}{ab\left(ac+c+1\right)}+\dfrac{1}{ac+c+1}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{ac}{ac+c+1}+\dfrac{1}{ac+c+1}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{ac+c+1}{ac+c+1}=1\Rightarrow A=1\)
Giải:
Theo đề bài ta có:
\(\left\{\begin{matrix}2014a+3b+1\\2014^a+2014a+b\end{matrix}\right.\) là hai số lẻ
Nếu \(a\ne0\Rightarrow2014^a+2014a\) là số chẵn
Để \(2014^a+2014a+b\) là số lẻ \(\Rightarrow b\) phải là số lẻ
Nếu \(b\) là số lẻ \(\Rightarrow3b+1\) là số chẵn, do đó:
\(2014a+3b+1\) là số chẵn (không thỏa mãn)
Vậy \(a=0\)
Với \(a=0\Rightarrow\left(3b+1\right)\left(b+1\right)=225\)
Vì \(b\in N\)
\(\Rightarrow\left(3b+1\right)\left(b+1\right)=3.75=5.45=9.25=1.225\)
\(3b+1⋮̸\)\(3;3b+1>b+1\)
\(\Rightarrow\left\{\begin{matrix}3b+1=25\\b+1=9\end{matrix}\right.\)\(\Rightarrow b=8\)
Vậy: \(\left\{\begin{matrix}a=0\\b=8\end{matrix}\right.\)