K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2017

Ta có: \(\hept{\begin{cases}\left(\sqrt{u^2+2}+u\right)\left(\sqrt{u^2+2}-u\right)=2\\\left(\sqrt{v^2-2v+3}+v-1\right)\left(\sqrt{v-2v+3}-v+1\right)=2\end{cases}}\)

Theo đề bài thì ta có:

\(\left(u+\sqrt{u^2+2}\right)\left(v-1+\sqrt{v^2-2v+3}\right)=2\)

Từ đây ta có hệ:

\(\hept{\begin{cases}\sqrt{u^2+2}-u=\sqrt{v^2-2v+3}+v-1\left(1\right)\\\sqrt{u^2+2}+u=\sqrt{v^2-2v+3}-v+1\left(2\right)\end{cases}}\)

Lấy (1) - (2) ta được: \(u+v=1\)

Ta có: \(u^3+v^3+3uv=1\)

\(\Leftrightarrow3uv+u^2-uv+v^2=1\)

\(\Leftrightarrow\left(u+v\right)^2=1\)(đúng)

\(\Rightarrow\)ĐPCM

14 tháng 3 2020

Bài 1 :

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{\left(x-1\right)^2}{z}+\frac{z}{4}\ge2\sqrt{\frac{\left(x-1\right)^2}{z}\frac{z}{4}}=\left|x-1\right|=1-x\)

\(\frac{\left(y-1\right)^2}{x}+\frac{x}{4}\ge2\sqrt{\frac{\left(y-1\right)^2}{x}\frac{x}{4}}=\left|y-1\right|=1-y\)

\(\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge2\sqrt{\frac{\left(z-1\right)^2}{y}\frac{y}{4}}=\left|z-1\right|=1-z\)

\(\Rightarrow\frac{\left(x-1\right)^2}{z}+\frac{z}{4}+\frac{\left(y-1\right)^2}{x}+\frac{x}{4}+\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge1-x+1-y+1-z\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\ge3-\left(x+y+z\right)-\frac{x+y+z}{4}=3-2-\frac{2}{4}=\frac{1}{2}\)

Vậy GTNN của \(A=\frac{1}{2}\Leftrightarrow x=y=z=\frac{2}{3}\)

NV
24 tháng 12 2021

1.

\(2P=2\sqrt{x-2}+4\sqrt{x+1}-2x+4016\)

\(=-\left(x-2-2\sqrt{x-2}+1\right)-\left(x+1-4\sqrt{x+1}+4\right)+4020\)

\(=-\left(\sqrt{x-2}-1\right)^2-\left(\sqrt{x+1}-2\right)^2+4020\)

2.

\(\sqrt{u}+\sqrt{v}=7\Rightarrow u+v+2\sqrt{uv}=49\)

\(\Rightarrow u+v+2\sqrt{6}=49\Rightarrow u+v=49-2\sqrt{6}\)

\(\Rightarrow\left|u-v\right|=\sqrt{\left(u-v\right)^2}=\sqrt{\left(u+v\right)^2-4uv}=\sqrt{\left(49-2\sqrt{6}\right)^2-4.6}=...\)

3.

\(\left(a-2\right)^2+\left(b-1\right)^2=545\)

\(P=23\left(a-2\right)+4\left(b-1\right)+2063\)

\(\Rightarrow\left(P-2063\right)^2=\left[23\left(a-2\right)+4\left(b-1\right)\right]^2\le\left(23^2+4^2\right)\left[\left(a-2\right)^2+\left(b-1\right)^2\right]\)

24 tháng 12 2021

lm tiếp hộ e câu 3 với

11 tháng 8 2017

Hung nguyen trổ tài đi hihi

23 tháng 7 2017

Akai Haruma ; Ace Legona ; Bùi Thị Vân

19 tháng 12 2017

3) Gợi ý: Thay 1=xy+yz+xz

\(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\sqrt{\dfrac{\left(y^2+xy+yz+xz\right)\left(z^2+xy+yz+xz\right)}{x^2+xy+yz+xz}}=x\sqrt{\dfrac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+z\right)\left(x+y\right)}}=x\sqrt{\left(y+z\right)^2}=x\left(y+z\right)\)

Tương tự rồi cộng vào

19 tháng 12 2017

@Ribi Nkok Ngok

10 tháng 8 2018

bài 2: ta có : \(Q=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{1-a}{\sqrt{1-a^2}-\left(1-a\right)}\right)\left(\sqrt{\dfrac{1}{a^2}-1}-\dfrac{1}{a}\right).\sqrt{a^2-2a+1}\)

\(\Leftrightarrow Q=\left(\dfrac{\sqrt{1+a}\sqrt{1-a}+1-a}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\dfrac{\sqrt{1-a^2}}{a}-\dfrac{1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{\sqrt{1+a}+\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right)\left(\dfrac{\sqrt{1-a^2}-1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{\sqrt{1-a^2}+1}{a}\right)\left(\dfrac{\sqrt{1-a^2}-1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{1-a^2-1}{a^2}\right)\left(1-a\right)=a-1\)

b) ta có : \(Q^3-Q=\left(a-1\right)\left(\left(a-1\right)^2-1\right)=a\left(a-1\right)\left(a-2\right)\)

mà ta có : \(\left\{{}\begin{matrix}a>0\\a-1< 0\\a-2< 0\end{matrix}\right.\Rightarrow a\left(a-1\right)\left(a-2\right)>0\) \(\Rightarrow Q^3-Q>0\Leftrightarrow Q^3>Q\)

vậy \(Q^3>Q\)

10 tháng 8 2018

Nguyễn Huy TúAkai HarumaLightning FarronNguyễn Thanh Hằngsoyeon_Tiểubàng giảiMashiro ShiinaVõ Đông Anh Tuấn

Hoàng Lê Bảo NgọcTrần Việt Linh

cứu tôi với