Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)\Rightarrow\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}x^2+y^2+z^2=3\\0\le x;y;z\le\sqrt{3}\end{matrix}\right.\)
\(P=x^2y+y^2z+z^2x-xyz\)
Không mất tính tổng quát, giả sử \(x=mid\left\{x;y;z\right\}\)
\(\Rightarrow\left(x-y\right)\left(x-z\right)\le0\Leftrightarrow x^2+yz\le xy+xz\)
\(\Rightarrow x^2y+y^2z\le xy^2+xyz\)
\(\Rightarrow P\le xy^2+z^2x+xyz-xyz=x\left(y^2+z^2\right)=x\left(3-x^2\right)\)
\(\Rightarrow P\le2-\left(x^3-3x+2\right)=2-\left(x-1\right)^2\left(x+2\right)\le2\)
\(P_{max}=2\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hoặc \(\left(1;0;2\right)\) và một vài hoán vị
Tham khảo:
Với các số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=1\), tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức: \(Q=\s... - Hoc24
Áp dụng BĐT Bunhiacopxki ta có:
\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)
\(=3\left(2a+2b+2c\right)=3.2\left(a+b+c\right)=6.2021=12126\)
\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{12126}\)
Dấu ''='' xảy ra khi \(a=b=c=\dfrac{2021}{3}\)
\(P=\sqrt{a+b}+\sqrt{b+c}\sqrt{c+a}\)
Aps dụng Bunhia-cốpxki : \(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)
\(=6\left(a+b+c\right)\)
\(=6.2021=12126\Leftrightarrow P=\sqrt{12126}\)
Vậy \(Max\left(P\right)=\sqrt{12126}\Leftrightarrow a=b=c=\dfrac{2021}{3}\)
(Refer ;-;)
\(Q\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\le\sqrt{6.\sqrt{3\left(a^2+b^2+c^2\right)}}=\sqrt{6\sqrt{3}}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Lại có:
\(a^2+b^2+c^2\le1\Rightarrow0\le a;b;c\le1\)
\(\Leftrightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)\le0\)
\(\Leftrightarrow a+b+c\ge a^2+b^2+c^2=1\)
Do đó:
\(Q^2=2\left(a+b+c\right)+2\sqrt{a^2+ab+bc+ca}+2\sqrt{b^2+ab+bc+ca}+2\sqrt{c^2+ab+bc+ca}\)
\(Q^2\ge2\left(a+b+c\right)+2\sqrt{a^2}+2\sqrt{b^2}+2\sqrt{c^2}\)
\(Q^2\ge4\left(a+b+c\right)\ge4\)
\(\Rightarrow Q\ge2\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị
Lời giải:
Đặt $\sqrt{4-a^2}=x; \sqrt{4-b^2}=y; \sqrt{4-c^2}=z$ thì bài toán trở thành:
Cho $x,y,z\in [0;2]$ thỏa mãn $x^2+y^2+z^2=6$. Tìm min: $P=x+y+z$
-------------------
Ta có: $P^2=x^2+y^2+z^2+2(xy+yz+xz)=6+2(xy+yz+xz)$
Vì $x,y,z\in [0;2]$ nên:
$(x-2)(y-2)(z-2)\leq 0\Leftrightarrow 2(xy+yz+xz)\geq xyz+4(x+y+z)-8\geq 4(x+y+z)-8=4P-8$
Vậy $P^2=6+2(xy+yz+xz)\geq 6+4P-8$
$\Leftrightarrow P^2-4P+2\geq 0$
$\Leftrightarrow (P-2)^2\geq 2\Rightarrow P\geq 2+\sqrt{2}$.
Vậy $P_{\min}=2+\sqrt{2}$.
Dấu "=" xảy ra khi $(a,b,c)=(0,2,\sqrt{2})$ và hoán vị