K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

Ta có x-y cùng tính chẵn lẻ với x-y

         y-z cùng tính chẵn lẻ với y-z

         z-x cùng tính chẵn lẻ với z-x

=>/x-y/+/y-z/+/z-x/ cùng tính chẵn lẻ với (x-y)+(y-z)+(z-x)=x-y+y-z+z-x=(x-x)+(y-y)+(z-z)=0, là 1 số chẵn

=>/x-y/+/y-z/+/z-x/ là 1 số chẵn

Vậy ko có x,y,z thỏa mãn đề bài

DD
25 tháng 1 2021

Ta có: 

\(\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\left(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\right)=3+\left(\frac{xz}{y^2}+\frac{y^2}{xz}\right)+\left(\frac{x^2}{yz}+\frac{yz}{x^2}\right)+\left(\frac{z^2}{xy}+\frac{xy}{z^2}\right)\)

\(\ge3+2\sqrt{\frac{xy^2z}{y^2xz}}+2\sqrt{\frac{x^2yz}{yzx^2}}+2\sqrt{\frac{z^2xy}{xyz^2}}=3+2+2+2=9\)

Dấu \(=\)xảy ra khi \(x=y=z\)

Suy ra giả thiết xảy ra khi \(x=y=z\)suy ra \(x=y=z=1\).

3 tháng 7 2016

Ta có:

(x - y) + (y - z) + (z - x)

= x - y + y - z + z - x

= 0

Do |x - y| + |y - z| + |z - x| có cùng tính chẵn lẻ với (x - y) + (y - z) + (z - x)

Mà (x - y) + (y - z) + (z - x) chẵn => |x - y| + |y - z| + |z - x| chẵn

Vậy ta không tìm được giá trị nguyên của x, y, z thỏa mãn đề bài

Ủng hộ mk nha ^_-

3 tháng 7 2016

x;y;z có vai trò tương đương nên giả sử \(x\ge y\ge z\)thì PT đê bài :

<=> x - y + y - z -(z - x) =2015

<=> 2(x - z) =2015 (*)

x, z nguyên thì Vế trái của (*) là chẵn không thể = Vế phải của (*) là 1 số lẻ.

Nên, không có giá trị nguyên nào của x; y; z thỏa mãn đề bài.

vì x/y+y/z+z/x=y/x+z/y+x/z=x+y+z

\(\Rightarrow\)x=y=z mà x+y+z=3

\(\Rightarrow\)x=1 , y=1 ,z=1

Vậy x=1 ,y=1,z=1

9 tháng 12 2021

Ko mất tính tổng quát, giả sử \(0< x\le y\le z\)

\(\Leftrightarrow xyz=x+y+z\le3z\\ \Leftrightarrow xyz-3z\le0\\ \Leftrightarrow z\left(xy-3\right)\le0\\ \Leftrightarrow xy\le3\)

Mà \(0< x\le y\Leftrightarrow xy>0\Leftrightarrow xy\in\left\{1;2;3\right\}\)

Với \(xy=1\Leftrightarrow x=y=1\Leftrightarrow z+1+1=z\left(\text{vô nghiệm}\right)\)

Với \(xy=2\Leftrightarrow x=1;y=2\left(x\le y\right)\)

\(\Leftrightarrow3+z=2z\\ \Leftrightarrow z=3\)

Với \(xy=2\Leftrightarrow x=1;y=3\left(x\le y\right)\)

\(\Leftrightarrow1+3+z=3z\\ \Leftrightarrow2z=4\\ \Leftrightarrow z=2\)

Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\) và các hoán vị

9 tháng 12 2021

Tí idol giúp em thêm mấy bài nữa nhé ! yeu

7 tháng 5 2017

Vì :

|x - y| cùng tính chất chẵn lẻ với x - y

|y - z| cùng tính chất chẵn lẻ với y - z

|z - t| cùng tính chất chẵn lẻ với z - t

|t - x| cùng tính chất chẵn lẻ với t - x

=> |x - y| + |y - z| + |z - t| + |t - x| cùng tính chất chẵn lẻ với (x - y) + (y - z) + (z - t) + (t - x)

Mà (x - y) + (y - z) + (z - t) + (t - x) = (x - x) + (y - y) + (z - z) + (t - t) = 0 là số chẵn

=> |x - y| + |y - z| + |z - t| + |t - x| là số chẵn

Mà 2017 là số lẻ => |x - y| + |y - z| + |z - t| + |t - x| ≠ 2017

=> x ; y ; z ; t \(\in\phi\)

27 tháng 1 2019

\(xy+yz+zx=xyz\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Do vai trò của x;y;z bình đẳng như nhau;giả sử:\(1< x\le y\le z\)

\(\Rightarrow\frac{1}{x}\ge\frac{1}{y}\ge\frac{1}{z}\)

Khi đó,ta có:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

\(\Rightarrow\frac{1}{x}+\frac{1}{x}+\frac{1}{x}=1\)

\(\Rightarrow\frac{3}{x}\ge1\)

\(\Rightarrow x=3;x=2\)

+) Với \(x=3\)\(\Rightarrow\frac{1}{3}+\frac{1}{y}+\frac{1}{z}=1\)

\(\Rightarrow\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\)

\(\Rightarrow\frac{1}{y}+\frac{1}{y}\ge\frac{2}{3}\)

\(\Rightarrow\frac{2}{y}\ge\frac{2}{3}\)

\(\Rightarrow y\le3\)

\(\Rightarrow y=2;y=3\)

+) với \(y=2\Rightarrow z=6\)

+) Với \(y=3\Rightarrow z=3\)

Với \(x=2\)

\(\Rightarrow\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\)

\(\Rightarrow\frac{2}{y}\ge\frac{1}{2}\)

\(\Rightarrow y=1;y=2;y=3;y=4\)

Đến đây rồi thử vào rồi tìm ra z.

Câu kết nhớ từ "HOÁN VỊ"