Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>(x-1)(2y^2+y+1)= -2
lập hệ phương trình ng nguyên các ước của hai rồi giải
Lời giải:
Với $x,y$ dương thì $\frac{2x+2y}{xy+2}$ nếu nhận giá trị nguyên thì là nguyên dương
$\Rightarrow 2x+2y\geq xy+2$
$\Leftrightarrow (x-2)(y-2)-2\leq 0(*)$
Nếu $x,y> 4$ thì $(*)$ không thể xảy ra. Do đó tồn tại ít nhất 1 số trong 2 số $\leq 4$
Giả sử $y=\min (x,y)$.
Nếu $y=1$ thì $\frac{2x+2y}{xy+2}=\frac{2x+2}{x+2}=2-\frac{2}{x+2}$ nguyên khi $x+2$ là ước của $2$. Mà $x+2\geq 3$ với mọi $x$ nguyên dương nên TH này loại
Nếu $y=2$ thì $\frac{2x+2y}{xy+2}=\frac{2x+4}{2x+2}=\frac{x+2}{x+1}=1+\frac{1}{x+1}$ nguyên khi $x+1$ là ước của $1$. Mà $x+1\geq 2$ nên TH này cũng loại nốt.
Nếu $y=3$ thì $0\geq (x-2)(y-2)-2=x-2-2=x-4$
$\Rightarrow 4\geq x$. Vì $x\geq y$ nên $x=3$ hoặc $x=4$. Thay vô phân thức ban đầu ta có $(x,y)=(4,3)$ thỏa mãn
Nếu $y=4$ thì $0\geq (x-2)(y-2)-2=2(x-2)-2$
$\Rightarrow x\leq 3$. Mà $x\geq y$ nên loại.
Vậy $(x,y)=(4,3)$ và hoán vị $(3,4)$
\(y\left(x+1\right)^2=-x^2+2018x-1\)
\(\Leftrightarrow y=\dfrac{-x^2+2018x-1}{\left(x+1\right)^2}=-1+\dfrac{2020x}{\left(x+1\right)^2}\)
\(\Rightarrow\dfrac{2020x}{\left(x+1\right)^2}\in Z\)
Mà x và \(x\left(x+2x\right)+1\) nguyên tố cùng nhau
\(\Rightarrow2020⋮\left(x+1\right)^2\)
Ta có 2020 chia hết cho đúng 2 số chính phương là 1 và 4
\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=1\\\left(x+1\right)^2=4\end{matrix}\right.\) \(\Rightarrow x=\left\{0;1\right\}\) \(\Rightarrow y\)
b.
Từ pt đầu:
\(x^2+xy-2y^2+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y-2\end{matrix}\right.\)
Thế xuống dưới ...
2y2 x + x + y + 1 = x2 + 2y2 + xy
<=> (2y2 x - 2y2) + (x - x2) + (y - xy) = -1
<=> (x - 1)(2y2 - x - y) = - 1
\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\2y^2-x-y=-1\end{cases}}hoac\:\orbr{\begin{cases}x-1=-1\\2y^2-x-y=1\end{cases}}\)
Tới đây đơn giản rồi tự làm tiếp nhé
2y2 x + x + y + 1 = x2 + 2y2 + xy
<=> (2y2 x - 2y2) + (x - x2) + (y - xy) = -1
<=> (x - 1)(2y2 - x - y) = - 1
\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\2y^2-x-y=-1\end{cases}}hoac\:\orbr{\begin{cases}x-1=-1\\2y^2-x-y=1\end{cases}}\)
chúc bạn học tốt
Tới đây đơn giản rồi tự làm tiếp n