K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2019

Câu hỏi của Fire Sky - Toán lớp 8 - Học toán với OnlineMath Em tham khảo tại link này nhé!

27 tháng 8 2021

Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)

Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)

Chứng minh tương tự:

\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)

Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)

Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\) 

 

27 tháng 8 2021

Bạn tham khảo nhé

https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737

9 tháng 6 2023

`2xy^2 + 2x + 3y^2 = 4`

`<=> 2x(y^2 + 1) + 3(y^1 + 1) = 7`

`<=> (2x + 3)(y^2 + 1) = 7`

`=> (2x+3),(y^2 + 1) \in Ư(7) = {-7;-1;1;7}`

Mà `y^2 + 1 \ge 1` nên không thể nhận giá trị âm, xét `2` trường hợp:

`-` Trường hợp `1:`

`2x + 3 = 7 <=> 2x = 4 <=> x = 2(TM)`

`y^2 + 1 = 1 <=> y^2 = 0 <=> y = 0 (TM)`

`-` Trường hợp `2:`

`2x + 3 = 1 <=> 2x = -2 <=> x = -1 (TM)`

`y^2 + 1 = 7 <=> y^2 = 6 <=> y = +- \sqrt{6}(Loại)`

Vậy `(x;y)=(2;0)`

9 tháng 6 2023

đa tạ thí chủ

NV
22 tháng 12 2020

Chắc đề bài là \(Q=\dfrac{3}{9x^2+6xy+y^2}+\dfrac{3}{3x^2+6xy+2y^2}\)

Từ giả thiết ta có:

\(2x^3+2xy^2+xy^2+y^3=2\left(x^2+y^2\right)\)

\(\Leftrightarrow2x\left(x^2+y^2\right)+y\left(x^2+y^2\right)=2\left(x^2+y^2\right)\)

\(\Leftrightarrow2x+y=2\)

Do đó:

\(Q=3\left(\dfrac{1}{9x^2+6xy+y^2}+\dfrac{1}{3x^2+6xy+2y^2}\right)\)

\(Q\ge\dfrac{3.4}{12x^2+12xy+3y^2}=\dfrac{4}{\left(2x+y\right)^2}=1\)

\(Q_{min}=1\) khi \(\left\{{}\begin{matrix}2x+y=2\\9x^2+6xy+y^2=3x^2+6xy+2y^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{6}-2\\y=6-2\sqrt{6}\end{matrix}\right.\)

5 tháng 3 2021

16x2 - 2xy2 - 3y2 + 24x = -336

\(\Leftrightarrow\) 16x2 - 2xy2 - 3y2 + 24x = -336

\(\Leftrightarrow\) 2x(8x - y2) + 3(8x - y2) = -336

\(\Leftrightarrow\) (8x - y2)(2x + 3) = -336

Đến đây chắc tự tìm được r

Chúc bn học tốt!