Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2x-8y^2=41\)
\(\Leftrightarrow x^2+2x+1-8y^2=41+1\)
\(\Leftrightarrow\left(x+1\right)^2-8y^2=42\)
\(\Leftrightarrow\left(x+1\right)^2=42+8y^2\)
\(\Leftrightarrow\left(x+1\right)^2=2\left(21+2y^2\right)\)
- \(21+2y^2\) là số lẻ, 2 là số chẵn.
- Do đó không có \(\left(x+1\right)^2\) để thỏa mãn yêu cầu bài toán.
2x=-8y<=>x/y=-8/2<=>x/-8=y/2
áp dụng t/c dãy t/s=nhau:
\(\frac{x}{-8}=\frac{y}{2}=\frac{x+y}{\left(-8\right)+2}=\frac{-54}{-6}=9\)
=>x/-8=9=>x=-72
y/2=9=>y=18
vậy...
a) x.(x-y) = 3 = 1.3 = (-1).(-3)
TH1: *x = 1
=> x-y = 3 => 1 - y = 3 => y = -2
* x = 3
=> x -y = 1 => 3 - y = 1 => y = 2
TH2: * x = -1
=> x - y = -3 => -1 - y = -3 => y = 2
* x = -3
=> x-y = -1 => -3 -y = -1 => y = -2
KL:...
b) ta có: \(x=\frac{y+2}{y-1}=\frac{y-1+3}{y-1}=1-\frac{3}{y-1}\)
Để x là số nguyên
\(\Rightarrow\frac{3}{y-1}\in z\Rightarrow3⋮y-1\Rightarrow y-1\inƯ_{\left(3\right)}=\left(\pm1;\pm3\right)\)
nếu y-1 = 1 => y = 2 => x = 1 - 3/2-1 => x = 1-3 => x = -2
...
rùi bn cứ làm như z để tìm x;y nhé
phần c bn lm tương tự như phần b nha!
20x = 15y = 12z
\(\frac{20x}{60}=\frac{15y}{60}=\frac{12z}{60}\)
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Thay x , y , z vào biểu thức đề cho , ta có :
2x2 + 2y2 - 3z2 = -100
2.(3k)2 + 2.(4k)2 - 3.(5k)2 = -100
2.9k2 + 2.16k2 - 3.25k2 = -100
18k2 + 32k2 - 75k2 = -100
(18 + 32 - 75)k2 = -100
-25k2 = -100
k2 = 4
\(\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
Với k = 2
\(\Rightarrow\hept{\begin{cases}x=3k=3.2=6\\y=4k=4.2=8\\z=5k=5.2=10\end{cases}}\)
Với k = -2
(tương tự như k = 2)
Vì x và y tỉ lệ thuận với 3 và 5:
=>x.3=y.5
=>x/5=y/3
Áp dụng tính chất dãy tỉ số bằng nhau:
x/5=y/3=y-x/3-5=4/(-2)=-2
x/5=(-2)=>x=(-2).5=-10
y/3=(-2)=>(-2).3=-6
Vậy x=-10, y=-6
Xét 3 TH
*TH1: \(y+2< 0,2x+3< 0\)
\(\Leftrightarrow-2x-3-y-2=8\Leftrightarrow2x+y=3\)(luôn đúng)
vậy có nghiệm với mọi x,y thỏa mãn$y+2<0,2x+3<0$
*TH2:\(y+2\ge0,2x+3< 0\)
\(\Leftrightarrow-2x-3+y+2=8\Leftrightarrow y-2x=9\)
thay 2x=3-y ,ta có
y-3+y=9 nên 2y=12 nên y=6(t/m)
suy ra x=-3/2(loại)
loại
*TH3: \(y+2\ge0,2x+3\ge0\)
\(2x+3+y+2=8\Rightarrow2x+y=3\)(luôn đúng)
vậy pt có nghiệm với mọi $y+2\ge 0,2x+3\ge 0$ thỏa mãn 2x+y=8
Ta có:
\(x^2+2x-8y^2=41\)
\(\Leftrightarrow x^2+2x+1=42+8y^2\)
\(\Leftrightarrow\left(x+1\right)^2=42+8y^2\)
Ta thấy:
\(\left(x+1\right)^2\) là số chẵn nên chia hết cho \(4\)
\(42+8y^2\) không chia hết cho \(4\)
Vậy không có số nguyên \(x,y\) nào thỏa mãn đề bài
thanks