Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y-3/y -2 =3/2
<=>y-3/y=7/2
<=>(y2 -3) / y =7/2
<=>( y2- 3 )*2= 7y
<=>2y2 - 6 =7y
<=> 2y2 -7y- 6=0
<=> y=\(\frac{7+\sqrt{97}}{4}\) hoặc y= \(\frac{7-\sqrt{97}}{4}\)
ok
\(\text{(x+2)(y-3)=5}\)
\(\Rightarrow x+2\)và \(y-3\inƯ\left(5\right)=\left\{-1;-5;1;5\right\}\)
ta có bảng sau :
x+2 | -1 | -5 | 1 | 5 |
y-3 | -5 | -1 | 5 | 1 |
x | -3 | -7 | -1 | 3 |
y | -2 | 2 | 8 | 4 |
vậy ta có các cặp số (x;y) là :
(-3;-2);(-7;2);(-1;8);(3;4)
Vì (x + 2)(y - 3) = 5
=> x + 2 và y - 3 là các ước của 5
Ư(5) = {1; -1; 5; -5}
Lập bảng giá trị:
x + 2 | 1 | 5 | -1 | -5 |
y - 3 | 5 | 1 | -5 | -1 |
x | -1 | 3 | -3 | -7 |
y | 8 | 4 | -2 | 2 |
Vậy các cặp (x,y) cần tìm là:
(-1; 8); (3; 4); (-3; -2); (-7; 2).
Để ( x + 2 ) ( y - 3 ) = 5 <=> x + 2 và y - 3 thuộc ước 5
Ư ( 5 ) = { - 1 ; 1 ; - 5 ; 5 }
Nếu x + 2 = 1 thì y - 3 = 5 => x = - 1 ; y = 8 ( chọn )
Nếu x + 2 = 5 thì y - 3 = 1 => x = 3 ; y = 4 ( chọn )
Nếu x + 2 = - 1 thì y - 3 = - 5 => x = - 3 ; y = - 2 ( chọn )
Nếu x + 2 = - 5 thì y - 3 = - 1 => x = - 7 ; y = 2 ( chọn )
Vậy ta có các cặp ( x ; y ) là : { ( - 1 ; 8 ) ; ( 3 ; 4 ) ; ( - 3 ; - 2 ) ; ( - 7 ; 2 )
\(\dfrac{x}{3}\) + \(\dfrac{1}{2}\) = \(\dfrac{1}{y+3}\) Đk (\(y\ne-3\))⇒ \(\dfrac{2x+3}{6}\) = \(\dfrac{1}{y+3}\) ⇒ (2\(x\)+3)(y+3) = 6
Ư(6) = { -6; -3; -2; -1; 1; 2; 3; 6}
Lập bảng ta có:
2\(x\) +3 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
\(x\) | -9/2 | -3 | -5/2 | -2 | -1 | -1/2 | 0 | \(\dfrac{3}{2}\) |
y+3 | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
y | -4 | -5 | -6 | -9 | 3 | 0 | -1 | -2 |
Từ bảng trên ta có các cặp \(x\), y nguyên thỏa mãn đề bài là:
(\(x\), y) = ( -3; -5); ( -2; -9); ( -1; 3); (0; -1);
Theo đề bài ta có: \(\frac{x-3}{y-2}=\frac{3}{2}\Rightarrow2\left(x-3\right)=3\left(y-2\right)\)
\(\Rightarrow2x-6=3y-6\)
\(\Rightarrow2x-3y=-6+6\)
Vì \(x-y=4\Rightarrow x=4+y\)
\(\Rightarrow2\left(y+4\right)-3y=0\)
\(\Rightarrow2y+8-3y=0\)
\(\Rightarrow-y=-8\)
\(\Rightarrow y=8\)
\(\Rightarrow x=y+4=8+4=12\)
Vậy x = 8 và y = 12
\(\left(x-2\right)^2.\left(y-3\right)=-4\\ \rightarrow\left(x-2\right)^2\inƯ\left(4\right),y-3\inƯ\left(4\right).\)
Vì x, y nguyên. Do đó \(\left(x-2\right)^2=1\) hoặc \(\left(x-2\right)^2=4.\)
TH1: \(\left(x-2\right)^2=1\) suy ra x = 1 hoặc x = 3
Khi đó y - 3 = 4 suy ra y = 7.
TH2: \(\left(x-2\right)^2=4\) suy ra x = 4 hoặc x = 0.
Khi đó y - 3 = 1 suy ra y = 4.
Vậy có 4 cặp x, y thỏa mãn là (x, y) = (1, 7); (3, 7); (4, 4); (0, 4)
Lời giải:
Với $x,y$ nguyên thì $(x-2)^2, y-3$ cũng nguyên và $(x-2)^2$ số chính phương nên không âm.
Tích 2 số nguyên bằng $-4$ nên xảy ra các TH sau:
TH1: $(x-2)^2=1; y-3=-4$
$\Rightarrow x=1$ hoặc $x=3; y=-1$. Ta có $(x,y)=(1,-1); (3,-1)$
TH2: $(x-2)^2=4; y-3=-1$
$\Rightarrow x=0$ hoặc $x=4; y=2$. Ta có $(x,y)=(0,2); (4,2)$