Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x/5-1/y=1/2
=>xy-5/5y=1/2(quy đồng nha)
=>2(xy-5)=5y(nhân chéo)
=>2xy-10=5y
=>2xy-5y=10
=>y(2x-5)=10
=>y,(2x-5)t thuộc Ư(10)={-1,1,-2,2,-5,5,-10,10}
Nên ta có bảng:
(2x-5) | -1 | 1 | -2 | 2 | -10 | 10 | -5 | 5 |
y | -10 | 10 | -5 | 5 | -1 | 1 | -2 | 2 |
x | 2 | 3 | loại | loại | loại | loại | 0 | 5 |
Vậy:có các cặp (x, y) là (2,-10),(3,10),(0,-2),(5,2)
Bài 2 :
Ta có : x - y = xy => x = xy + y = y ( x + 1 )
=> x : y = x + 1 ( vì y khác 0 )
Ta có : x : y = x - y => x + 1 = x - y => y = -1
Thay y = -1 vào x - y = xy , ta được x - (-1) = x (-1) => 2x = -1 => x = -1/2
Vậy x = -1/2 ; y = -1
a) + Nếu x + y + z = 0 thay vào đề bài ta được x = y = z = 0
+ Nếu x + y + z khác 0, áp dụng t/c của dãy tỉ số = nhau ta có:
x/z+y+1 = y/x+z+1 = z/x+y-2 = x+y+z/(z+y+1)+(x+z+1)+(x+y-2)
= x+y+z/2.(x+y+z) = 1/2 = x+y+z
=> 2x = z+y+1; 2y = x+z+1; 2z = x+y-2
=> 3x = x+y+z+1; 3y = x+y+z+1; 3z=x+y+z-2
=> 3x=1/2+1=3/2; 3y=1/2+1=3/2; 3z=1/2-2=-3/2
=> x=1/6 = y; z = -1/2
b) Theo bài ra ta có:
x + 1/x = k (k thuộc Z)
=> x^2+1/x = k
+ Với k = 0 => x = 0 (thỏa mãn)
+ Với k khác 0, do k nguyên nên x^2+1/x nguyên
=> x^2+1 chia hết cho x
=> 1 chia hết cho x
=> x thuộc {1 ; -1} (thỏa mãn)
Vậy số hữu tỉ x cần tìm là 0; 1; -1
5/x = 1/8 - y/4 = (1-2y)/8
<=> x = 5*8/(1-2y) ; thấy 1-2y là số lẻ nên UCLN(8,1-2y) = 1
do đó x/8 = 5/(1-2y) (*)
x, y nguyên khi 1-2y phải là ước của 5
* 1-2y = -1 => y = 1 => x = -40
* 1-2y = 1 => y = 0 => x = 40
* 1-2y = -5 => y = 3 => x = -8
* 1-2y = 5 => y = -2 => x = 8
vậy có 4 cặp (x,y) nguyên (-40,1) ; (40, 0) ; (-8, -5) ; (8, 5)
CHÚC BẠN HỌC TỐT
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{20+xy}{4x}=\frac{1}{8}\)
8( 20 + xy ) = 4x
2( 20 + xy ) = x
40 + 2xy = x
40 = x - 2xy
-40 = 2xy - x
2xy - x = -40
x( 2y - 1 ) = -40
Ta thấy 2y - 1 là ước lẻ của 40. Ta có:
2y-1 | -5 | -1 | 1 | 5 |
x | 8 | 40 | -40 | -8 |
y | -2 | 0 | 1 | 3 |
x | 8 | 40 | -40 | -8 |
Ta có các cặp số ( x;y ) là: ( 8;-2 ) ; ( 40;0 ) ; ( -40;1 ) ; ( -8;3 ).
Theo bài ra ta có : \(\frac{x}{5}-\frac{1}{y}=\frac{1}{2}\)
\(\Rightarrow\frac{xy-5}{5y}=\frac{1}{2}\)
\(\Rightarrow2\left(xy-5\right)=5y\)
\(\Rightarrow2xy-10-5y=0\)
\(\Rightarrow y\left(2x-5\right)=10\)
mà 10 = 2.5 = (-2).(-5) = 1.10 = (-1).(-10)
Lập bảng xét 8 trường hợp :
Vậy các cặp (x;y) thỏa mãn bài toán là : (3;10) ; (5;2) ; (0;-2) ; (2;-10)