K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

Ta có:

\(x\) và \(x^5\) có cùng tính chẵn - lẻ (cùng tính chẵn - lẻ nghĩa là nếu \(x\) lẻ thì \(x^5\) lẻ, còn nếu \(x\) chẵn thì \(x^5\) cũng chẵn luôn)

\(y\) và \(y^3\) có cùng tính chẵn - lẻ

\(\left(x+y\right)\) và \(\left(x+y\right)^2\) có cùng tính chẵn - lẻ

Vậy \(x^5+y^3-\left(x+y\right)^2\) và \(x+y-\left(x+y\right)\) có cùng tính chẵn - lẻ

Trong mọi trường hợp, dù \(x\) và \(y\) lẻ hay chẵn thì kết quả luôn là số chẵn\(\Rightarrow3z^3\) là số chẵn\(\Rightarrow z\) phải là số chẵn mà 2 là số nguyên tố chẵn duy nhất\(\Rightarrow z=2\)

\(\Rightarrow x^5+y^3-\left(x+y\right)^2=3\cdot2^3=24\)

Chỉ khi \(x=y=2\) thì phương trình trên mới hợp lí.

Vậy \(x=y=2\)

Đáp số: \(x=y=z=2\)

6 tháng 3 2021
x và x5 có cùng tính chẵn - lẻ (cùng tính chẵn - lẻ nghĩa là nếu x lẻ thì x5 lẻ, còn nếu x chẵn thì x5 cũng chẵn luôn) y và y3 có cùng tính chẵn - lẻ (x+y) và (x+y)2 có cùng tính chẵn - lẻ Vậy x5+y3−(x+y)2 và x+y−(x+y) có cùng tính chẵn - lẻ Trong mọi trường hợp, dù x và y lẻ hay chẵn thì kết quả luôn là số chẵn ⇒3z3 là số chẵn ⇒z phải là số chẵn mà 2 là số nguyên tố chẵn duy nhất ⇒z=2 ⇒x5+y3−(x+y)2=3·23=24 Chỉ khi x=y=2 thì phương trình trên mới hợp lí. Vậy x=y=2 x=y=z=2
10 tháng 8 2021

Ta có: x:y:z =4:5:6

\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{z}{6}\)

\(\dfrac{x^2}{16}=\dfrac{2y^2}{50}=\dfrac{z^2}{36}\)

\(\dfrac{x^2-2y^2+z^2}{16-50+36}=\dfrac{18}{2}=9\)

\(\dfrac{x}{4}=9\Rightarrow x=36\)

\(\dfrac{y}{5}=9\Rightarrow y=45\)

\(\dfrac{z}{6}=9\Rightarrow z=54\)

 

27 tháng 11 2017

Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố 

Vậy x chỉ là số chẵn mà nguyên tố => x= 2 

Với y=2 => z= 5 thỏa đk đề bài 

Nếu y>2 => y lẻ (vì y nguyên tố) 

=> y =2k +1 
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m 

Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3 
=>z chia hết cho 3 không thỏa đk 

Vậy x=y=2; z= 5 là duy nhất 

1 tháng 7 2016

Bài toán không có lời giải vì không có số nguyên tố âm nên không có kết quả cho bài toán này

24 tháng 2 2020

  Từ  : 

   \(x^3+y^3+z^3=x+y+z+2017\)  \(\implies\)  \(\left(x^3-x\right).\left(y^3-y\right).\left(z^3-z\right)=2017\left(1\right)\)

Chứng minh được :\(x^3-x=x.\left(x-1\right).\left(x+1\right)\)

\(y^3-y=y.\left(y-1\right).\left(y+1\right)\)

\(z^3-1=y.\left(y-1\right).\left(y+1\right)\)

Vì x, y, z  là các số nguyên nên

\(x.\left(x-1\right).\left(x+1\right);y.\left(y-1\right).\left(y+1\right);z.\left(z-1\right).\left(z+1\right)\) là tích của ba số nguyên liên tiếp nên chia hết cho 3

Do đó vế trái của (1) luôn chia hết cho 3 mà 2017 không chia hết cho 3

 Vậy không có số nguyên x,y,z nào thỏa mãn ycbt