Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: xy + x - y -1 = 4 -1
=> x (y+1) - (y+1)=3
=> (x+1)(y+1)=3=1.3=3.1=(-1).(-3)=(-3).(-1)
Ta có bảng sau:
x+1 | 1 | 3 | -1 | -3 |
y+1 | 3 | 1 | -3 | -1 |
x | 0 | 2 | -2 | -4 |
y | 2 | 0 | -4 | -2 |
xy+x-y=4
=>(xy+x)-(y+1)=3
=>(y+1)(x-1)=3
Mà x;y nguyên nên (x-1);(y+1) thuộc Ư(3)={1;-1;3;-3}
Đến đây bạn lập bảng là ra
x+xy+y=6
x(1+y)+1(1+y)=6+1
(x+1)(y+1)=7
............. tk nha
x + xy + y = 6
<=> x+ xy+ y + 1 = 7
<=> x(y + 1) + (y + 1) = 7
<=> (x + 1)(y + 1) = 7
* x + 1 = 7 và y + 1 = 1 <=> (x ; y) = (36; 0)
* x + 1 = -7 và y + 1 = -1 <=> (x ; y) = (-8 ; -2)
* x + 1 = 1 và y + 1 = 7 <=> (x ; y) = (0 ; 6)
* x + 1 = -1 và y + 1 = -7 <=> (x ; y) = (-2 ; -8)
* x + 1 = 3 và y + 1 = 4 <=> (x ; y) = (2 ; 3)
* x + 1 = -3 và y + 1 = -4 <=> (x ; y) = (-4 ; -5)
ta xét:
\(xy-x+y=2\)
\(\Rightarrow\left(xy+y\right)-x-1+1=2\)
\(\Rightarrow y\left(x+1\right)-\left(x+1\right)+1=2\)
\(\Rightarrow y\left(x+1\right)-\left(x+1\right)=2-1=1\)
\(\Rightarrow\left(y-1\right)\left(x+1\right)=1\)
\(\Rightarrow\left(y-1\right);\left(x+1\right)\inƯ\left(1\right)=\left(1;-1\right)\)
Ta có bảng sau :
x + 1 | 1 | -1 |
y - 1 | 1 | -1 |
x | 0 | -2 |
y | 2 | 0 |
Vậy ta có các cặp (x;y) thỏa mãn là :\(\left(0;2\right);\left(-2;0\right)\)
1) x + y + xy = 3
<=> x + y + xy + 1 = 4
<=> x(y + 1) + (y + 1) = 4
<=> (x + 1)(y + 1) = 4
Vì x,y nguyên nên ta xét các hệ phương trình :
* x + 1 = 4 và y + 1 = 1 <=> (x ; y) = (3 ; 0)
* x + 1 = -4 và y + 1 = -1 <=> (x ; y) = (-5 ; -2)
* x + 1 = 1 và y + 1 = 4 <=> (x ; y) = (0 ; 3)
* x + 1 = -1 và y + 1 = -4 <=> (x ; y) = (-2 ; -5)
* x + 1 = 2 và y + 1 = 2 <=> (x ; y) = (1 ; 1)
* x + 1 = -2 và y + 1 = -2 <=> (x ; y) = (-3 ; -3)
Vậy phương trình có 6 nghiệm nguyên là (3 ; 0) ; (0 ; 3) ; (-2 ; -5); (-5 ; -2) ; (1;1) và (-3 ; -3)
xy+x-y=4
=>(xy+x)-(y+1)=3
=>(y+1)(x-1)=3
Mà x;y nguyên nên (x-1);(y+1) thuộc Ư(3)={1;-1;3;-3}
Đến đây bạn lập bảng là ra
xy+x-y=4
=>(xy+x)-(y+1)=3
=>(y+1)(x-1)=3
Mà x;y nguyên nên (x-1);(y+1) thuộc Ư(3)={1;-1;3;-3}
Đến đây bạn lập bảng là ra