Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
a, 3n−1∈Ư(12)={±1;±2;±3;±4;±6;±12}
b,
Để phân số :2n+372n+37 có giá trị là số nguyên thì 2n+3:7
\(\implies\) 2n+3=7k2n+3=7k
\(\implies\) 2n=7k-3
\(\implies\) n=7k−327k−32
Vậy với mọi số nguyên n có dang 7k−327k−32 thì phân số 2n+372n+37 có giá trị là số nguyên
:))
A nguyên thì 3n+4 chia hết cho 2n+1
=>6n+8 chia hết cho 2n+1
=>6n+3+5 chia hết cho 2n+1
=>\(2n+1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{0;-1;2;-3\right\}\)
\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
3n-1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | loại | 0 | 1 | loại | loại | loại | loại | -1 | loại | loại | loại | loại |
c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
n-3 | 1 | -1 | 3 | -3 | 9 | -9 |
n | 4 | 2 | 6 | 0 | 12 | -6 |
-bạn tự lập bảng nhé
a, \(3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
b, \(\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\Rightarrow n-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
n-3 | 1 | -1 | 11 | -11 |
n | 4 | 2 | 14 | -8 |
c, \(\dfrac{3n}{n+2}=\dfrac{3\left(n+2\right)-6}{n+2}=3-\dfrac{6}{n+2}\Rightarrow n+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
a) Để \(\frac{12}{3n-1}\) là số nguyên thì \(12⋮3n-1\)
Mà \(Ư\left(12\right)\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Hay \(3n-1\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Với điều kiện \(n\inℤ\) ; Ta có bảng sau:
3n - 1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
n | \(\frac{-11}{3}\) | \(\frac{-5}{3}\) | \(-1\) | \(\frac{-2}{3}\) | \(\frac{-1}{3}\) | \(0\) | \(\frac{2}{3}\) | \(1\) | \(\frac{4}{3}\) | \(\frac{5}{3}\) | \(\frac{7}{3}\) | \(\frac{13}{3}\) |
ĐCĐK | loại | loại | TM | loại | loại | TM | loại | TM | loại | loại | loại | loại |
Vậy \(n\in\left\{-1;0;1\right\}\)
b) Để \(\frac{2n+3}{7}\)là số nguyên thì \(2n+3⋮7\)
Mà \(B\left(7\right)\in\left\{\pm7;\pm14;\pm21;\pm28;\pm35;\pm42;\pm49;\pm56;\pm63;\pm70;\pm77;...\right\}\)
Hay \(2n+3\in\left\{\pm7;\pm14;\pm21;\pm28;\pm35;\pm42;\pm49;\pm56;\pm63;\pm70;\pm77;...\right\}\)
Với điều kiện \(n\inℤ\) ; Ta có bảng sau:
2n + 3 | -35 | -28 | -21 | -14 | -7 | 7 | 14 | 21 | 28 | 35 | ... |
n | \(-19\) | \(\frac{-31}{2}\) | \(-12\) | \(\frac{-17}{2}\) | \(-5\) | \(2\) | \(\frac{11}{2}\) | \(9\) | \(\frac{25}{2}\) | \(16\) | ... |
ĐCĐK | TM | loại | TM | loại | TM | TM | loại | TM | loại | TM | ... |
Vậy \(n\in\left\{-19;-12;-5;2;9;16;...\right\}\)
c) Mik chx lm đc, sr, bn thông cảm!
a) Để phân số \(\frac{12}{3n-1}\)có giá trị là 1 số nguyên
\(\Rightarrow\)12\(⋮\)3n-1
\(\Rightarrow3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Tiếp theo bạn tìm số nguyên n như thường, nếu có giá trị là phân số thì bỏ nên bạn tự làm nhé!
b) Để phân số \(\frac{2n+3}{7}\)có giá trị là 1 số nguyên
\(\Rightarrow\)2n+3\(⋮\)7
\(\Rightarrow\)2n+3=7k
\(\Rightarrow n=\frac{7k-3}{2}\)