Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
\(n+1=n-2+3\)chia hết cho \(n-2\)\(\Rightarrow\)\(3\)chia hết cho \(n-2\)\(\Rightarrow\)\(\left(n-2\right)\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Do đó :
\(n-2=1\Rightarrow n=1+2=3\)
\(n-2=-1\Rightarrow n=-1+2=1\)
\(n-2=3\Rightarrow n=3+2=5\)
\(n-2=-3\Rightarrow n=-3+2=-1\)
Vậy \(n\in\left\{3;1;5;-1\right\}\)
a, n + 1 chia hết cho n - 2
\(\Rightarrow n-2+3\) chia hết cho \(n-2\)
\(\Rightarrow\) 3 chia hết cho n - 2
\(\Rightarrow n-2\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n-2\in\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{3;1;5;-1\right\}\)
\(a,n+3⋮n\)
mà \(n⋮n\Rightarrow n\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(b,2n+3⋮n\)
mà \(2n⋮n\Rightarrow n\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(c,3n-1⋮n+1\)
\(\Rightarrow3n+3-2⋮n+1\)
\(\Rightarrow3\left(n+1\right)-2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow n\in\left\{0;-2;1;-3\right\}\)
a. Để ( 3n - 1) chia hết cho n
suy ra : 3n chia hết cho n và 1chia hết cho n.
Ta có n thuộc ước của 1 = { -1 ;1}
b. ta có : (2n +1 )/ (n-2) =(2n -4 +5 )/ (n -2 )
mà (2n-4) chia hết cho (n- 2) và 5 chia hết (n - 2)
suy ra (n -2 ) thuộc ước của 5 = { -5;-1;1;5}
xét : ...
câu c, d tương tự
3)
3n+7\(⋮2n+1\)
vì \(3n+7⋮3n+7\)
=>\(2\left(3n+7\right)⋮3n+7\)
=> 6n+7\(⋮3n+7\)
vì \(2n+1⋮2n+1\)
\(\Rightarrow3\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+1⋮2n+1\)
\(\Rightarrow\left(6n+7\right)-\left(6n+1\right)⋮2n+1\)
\(\Rightarrow6⋮2n+1\)
đến đoạn này em chỉ cần lập bảng tìm n nữa là xong nhé
3n+2 chia hết cho n-1
ta có: 3n+2=3n-3+5=3(n-1)+5
Vì n-1 chia hết cho n-1
suy ra 5 chia hết cho n-1
suy ra n-1 thuộc bội của 5 =1,-1,5,-5
Rồi bạn tự giải ra từng trường hợp nhé !
a/ \(n+2⋮n+1\)
\(\left(n+1\right)+1⋮n+1\)
Vì \(n+1⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\orbr{\begin{cases}n+1=1\\n+1=-1\end{cases}\Rightarrow\orbr{\begin{cases}n=0\\n=-2\end{cases}}}\)
b/ \(3n+2⋮n-1\)
\(3n-3+5⋮n-1\)
\(3\left(n-1\right)+5⋮n-1\)
Vì \(3\left(n-1\right)⋮n-1\)
\(\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\orbr{\begin{cases}n-1=1\\n-1=-1\end{cases}\Rightarrow\orbr{\begin{cases}n=2\\n=0\end{cases}}}\)
\(\orbr{\begin{cases}n-1=5\\n-1=-5\end{cases}\Rightarrow\orbr{\begin{cases}n=6\\n=-4\end{cases}}}\)
Vậy \(n\in\left\{2;0;6;-4\right\}\)
c/ 2n - 1 là ước của 3n + 2
\(\Rightarrow3n+2⋮2n-1\)
\(\Rightarrow6n+4⋮2n-1\)
\(\Rightarrow6n-3+7⋮2n-1\)
\(\Rightarrow3\left(2n-1\right)+7⋮2n-1\)
Vì \(3\left(2n-1\right)⋮2n-1\)
\(\Rightarrow7⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\orbr{\begin{cases}2n-1=1\\2n-1=-1\end{cases}\Rightarrow\orbr{\begin{cases}2n=2\\2n=0\end{cases}\Rightarrow}\orbr{\begin{cases}n=1\\n=0\end{cases}}}\)
\(\orbr{\begin{cases}2n-1=7\\2n-1=-7\end{cases}\Rightarrow\orbr{\begin{cases}2n=8\\2n=-6\end{cases}\Rightarrow}\orbr{\begin{cases}n=4\\n=-3\end{cases}}}\)
Vậy \(n\in\left\{1;0;4;-3\right\}\)
hok tốt!!
B, 3n chia hết cho n-1
3.(n-1)+3 chia hết cho n-1
3.(n-1)chia hết cho n-1 suy ra 3 chia hết cho n-1
suy ra n-1 thuộc ước của 3 mà ước của 3 là 1,3,-1,-3
n-1=1, n=2
n-1=3, n=4
n-1=-1, n=0
n-1 =-3, n=-2
ĐÚNG THÌ TICK CHO MÌNH NHÉ, CÂU C LÀM TƯƠNG TỰ