Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Theo tính chất dãy tỉ số bằng nhau ta có:
Ta có:
Mà nên a, b và c cùng dấu.
Vậy ta tìm được các số a1 = 4; b1 = 6; c1 = 8 hoặc a2 = -4; b2 = -6 và c2 = -8
Ta có:
Suy ra:
Theo tính chất dãy tỉ số bằng nhau ta có:
Ta có:
Vậy a = -70; b = -105; c = -84.
Mình sẽ góp 1 cách (khá độc đáo...vì chẳng ai làm kiểu này cho tốn công), cũng khá nhanh
Có G(x)=x3−(a+b+c)x2+(ab+bc+ca)x−abcG(x)=x3−(a+b+c)x2+(ab+bc+ca)x−abc nhận a, b, c là nghiệm, thay x lần lượt bằng a, b, c xong cộng theo vế:
a3+b3+c3−3abc−...=0=>a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)a3+b3+c3−3abc−...=0=>a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)
Cách thông dụng nhất:
a3+b3+c3−3abca3+b3+c3−3abc
=a3+3ab(a+b)+b3+c3−3abc−3ab(a+b)=a3+3ab(a+b)+b3+c3−3abc−3ab(a+b)
=(a+b)3+c3−3ab(a+b+c)=(a+b)3+c3−3ab(a+b+c)
=(a+b+c)(a2+2ab+b2−ab−ac+c2)−3ab(a+b+c)=(a+b+c)(a2+2ab+b2−ab−ac+c2)−3ab(a+b+c)
=(a+b+c)(a2+b2+c2−ab−bc−ca)=(a+b+c)(a2+b2+c2−ab−bc−ca)
_____
P/s: Mình đang nghĩ thêm cách nữa, nếu được sẽ post lên.
a,b,c là số nguyên dương => 3abc>0
=> a3-b3-c3>0 => a3>b3 => a>b và a3>c3 => a>c
=> 2a > b+c => 4a > 2(b+c)
=> 4a>a2 => a<4
Mà 2(b+c) là số chẵn => a2 chẵn hay a chẵn => a=2
Vì b,c<2 và b,c thuộc Z+ => b=c=1
Vậy a=2,b=c=1