Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét: Ta có: A+B , A-B, B-A , -A-B có cùng tính chẵn lẻ
do đó: |A|+|B| có thể bằng A+B, A-B, -A-B, -A-B và chúng có cùng tính chẵn lẻ với nhau
Do đó: |a-b|+|b-c|+|c+d|+|d+a| có cùng tính chẵn lẻ với a-b+b-c+c+d+d+a =2a+2d=2(a+d) là chẵn vì a, b, c, d nguyên
Mà đề bài |a-b|+|b-c|+|c+d|+|d+a|=2017 là lẻ trái ngược với điều trên
=> không tồn tại a, b, c, d nguyên dương
b, Có: a/b < c/d => ad < bc
Xét a.(b+d)-b.(a+c) = ab+ad-ba-bc = ad-bc < 0
=> a.(b+d) < b.(a+c)
=> a/b < a+c/b+d
c, Đề phải là cho a+b+c = 2016 chứ bạn
Có : A = a/a+b+c-c + b/a+b+c-a + c/a+b+c-b = a/a+b + b/b+c + c/c+a
Vì a,b,c thuộc Z+ nên a/a+b > 0 ; b/b+c > 0 ; c/c+a > 0
=> A > a/a+b+c + b/a+b+c + c/a+b+c = 1
Lại có : a < a+b ; b < b+c ; c < c+a => 0 < a/a+b < a ; 0 < b/b+c < 1 ; 0 < c/c+a < 1
=> A < a+c/a+b+c + b+a/a+b+c + c+b/a+b+c = 2
=> 1 < A < 2
=> A ko phải là số tự nhiên
Tk mk nha
a,ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU.
TA CÓ:\(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{d}\)=\(\frac{d}{e}\)=>\(\frac{2a^2}{2b^2}\)=\(\frac{3b^2}{3c^2}\)=\(\frac{4c^2}{4d^2}\)=\(\frac{5d^2}{5e^2}\)=\(\frac{2a^2+3b^2+4c^2+5d^2}{2b^2+3c^2+4d^2+5e^2}\)(đfcm)
a, Có: \(\frac{a}{c}=\frac{c}{b}=\frac{b}{d}=k\Rightarrow k^3=\frac{a}{c}.\frac{c}{b}.\frac{b}{d}=\frac{a^3}{c^3}=\frac{c^3}{b^3}=\frac{b^3}{d^3}=\frac{a^3+c^3-b^3}{c^3+b^3-d^3}=\frac{a}{d}\left(ĐPCM\right)\)
b, Thấy: I y-3 I \(\ge\)0 => VT\(\le\)42 => VP \(\le\)42
=> \(4\left(2012-x\right)^4\le42\Leftrightarrow\left(2012-x\right)^4\le10.5\)
Mặt khác với \(\forall y\in Z,\)VT \(⋮\)3
=> VP \(⋮\)3 <=> VP=0 hay x=2012
khi đó: VT=42-3I y-3I =0 <=> Iy-3I=14 <=> \(\orbr{\begin{cases}y-3=-14\\y-3=14\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-11\\y=17\end{cases}}}\)
Vậy nghiệm thỏa mãn là: (x,y)=(2012,-11), (2012, 17)
Cho a,b,c,d>O. A=a/a+b+c + b/b+c+d + c/c+d+a + d/ d+a+b. Tìm phần nguyên của A. Cảm ơn các bạn nhiều
Ap Dụng tính chất của dãy tỉ ssoos bằng nau:
\(A=\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
\(A=\frac{a+b+c}{3a+3b+3c+3d}\)
Tiepps theo chúng ta rút gọn
\(A=\frac{1}{3}\)