K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

Ta có: 2a+3b là số hữu tỉ 

=> 5(2a+3b)=10a+15b là số hữu tỉ 

5a-4b là số hữu tỉ

=> 2(5a-4b)=10a -8b là số hữu tỉ

=> (10a+15b)-(10a-8b)=10a+15b-10a+8b=23b

=> b là số hữu tỉ

=> 3b là số hữu tỉ

=> (2a+3b)-3b =2a là số hữu tỉ

=> a là số hữu tỉ

8 tháng 5 2015

a) \(G=\frac{\frac{3a}{b}-\frac{2b}{b}}{\frac{a}{b}-\frac{3b}{b}}=\frac{3.\frac{10}{3}-2}{\frac{10}{3}-3}=\frac{10-2}{\frac{1}{3}}=24\)

b) \(H_1=\frac{\frac{2a-3b}{b}}{\frac{4a+3b}{b}}=\frac{\frac{2a}{b}-\frac{3b}{b}}{\frac{4a}{b}+\frac{3b}{b}}=\frac{2.\frac{10}{3}-3}{4.\frac{10}{3}+3}=\frac{\frac{11}{3}}{\frac{49}{3}}=\frac{11}{49}\)

\(H_2=\frac{\frac{5a-4b}{b}}{\frac{3a+b}{b}}=\frac{5.\frac{a}{b}-4}{3.\frac{a}{b}+1}=\frac{5.\frac{10}{3}-4}{3.\frac{10}{3}+1}=\frac{\frac{38}{3}}{\frac{33}{3}}=\frac{38}{33}\)

=> \(H=\frac{11}{49}-\frac{38}{33}=\frac{-1499}{1617}\)

31 tháng 1 2019

\(\hept{\begin{cases}2a+3b+2c=5\\5a+4b+c=55\\a+b-4c=24\end{cases}}\Leftrightarrow8a+8b-c=5+55+24\)

\(\Leftrightarrow8a+8b-c=84\)

\(\Leftrightarrow8\left(a+b\right)-c=84\)

\(\Leftrightarrow8\left(a+b\right)=84+c\)

\(\Rightarrow a+b+c=84\)

\(\Rightarrow TBC\left(a,b,c\right)=\frac{84}{3}=28\)

Ta có: \(\dfrac{3}{5}a=\dfrac{2}{3}b\)

\(\Leftrightarrow\dfrac{a}{\dfrac{5}{3}}=\dfrac{b}{\dfrac{3}{2}}\)

Đặt \(\dfrac{a}{\dfrac{5}{3}}=\dfrac{b}{\dfrac{3}{2}}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3}k\\b=\dfrac{3}{2}k\end{matrix}\right.\)

Ta có: \(a^2-b^2=38\)

\(\Leftrightarrow k^2\cdot\dfrac{25}{9}-k^2\cdot\dfrac{9}{4}=38\)

\(\Leftrightarrow k^2=72\)

Trường hợp 1: \(k=6\sqrt{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3}k=10\sqrt{2}\\b=\dfrac{3}{2}k=9\sqrt{2}\end{matrix}\right.\)

Trường hợp 2: \(k=-6\sqrt{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3}k=-10\sqrt{2}\\b=\dfrac{3}{2}k=-9\sqrt{2}\end{matrix}\right.\)