Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2a+3b là số hữu tỉ
=> 5(2a+3b)=10a+15b là số hữu tỉ
5a-4b là số hữu tỉ
=> 2(5a-4b)=10a -8b là số hữu tỉ
=> (10a+15b)-(10a-8b)=10a+15b-10a+8b=23b
=> b là số hữu tỉ
=> 3b là số hữu tỉ
=> (2a+3b)-3b =2a là số hữu tỉ
=> a là số hữu tỉ
a) \(G=\frac{\frac{3a}{b}-\frac{2b}{b}}{\frac{a}{b}-\frac{3b}{b}}=\frac{3.\frac{10}{3}-2}{\frac{10}{3}-3}=\frac{10-2}{\frac{1}{3}}=24\)
b) \(H_1=\frac{\frac{2a-3b}{b}}{\frac{4a+3b}{b}}=\frac{\frac{2a}{b}-\frac{3b}{b}}{\frac{4a}{b}+\frac{3b}{b}}=\frac{2.\frac{10}{3}-3}{4.\frac{10}{3}+3}=\frac{\frac{11}{3}}{\frac{49}{3}}=\frac{11}{49}\)
\(H_2=\frac{\frac{5a-4b}{b}}{\frac{3a+b}{b}}=\frac{5.\frac{a}{b}-4}{3.\frac{a}{b}+1}=\frac{5.\frac{10}{3}-4}{3.\frac{10}{3}+1}=\frac{\frac{38}{3}}{\frac{33}{3}}=\frac{38}{33}\)
=> \(H=\frac{11}{49}-\frac{38}{33}=\frac{-1499}{1617}\)
\(\hept{\begin{cases}2a+3b+2c=5\\5a+4b+c=55\\a+b-4c=24\end{cases}}\Leftrightarrow8a+8b-c=5+55+24\)
\(\Leftrightarrow8a+8b-c=84\)
\(\Leftrightarrow8\left(a+b\right)-c=84\)
\(\Leftrightarrow8\left(a+b\right)=84+c\)
\(\Rightarrow a+b+c=84\)
\(\Rightarrow TBC\left(a,b,c\right)=\frac{84}{3}=28\)
Ta có: \(\dfrac{3}{5}a=\dfrac{2}{3}b\)
\(\Leftrightarrow\dfrac{a}{\dfrac{5}{3}}=\dfrac{b}{\dfrac{3}{2}}\)
Đặt \(\dfrac{a}{\dfrac{5}{3}}=\dfrac{b}{\dfrac{3}{2}}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3}k\\b=\dfrac{3}{2}k\end{matrix}\right.\)
Ta có: \(a^2-b^2=38\)
\(\Leftrightarrow k^2\cdot\dfrac{25}{9}-k^2\cdot\dfrac{9}{4}=38\)
\(\Leftrightarrow k^2=72\)
Trường hợp 1: \(k=6\sqrt{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3}k=10\sqrt{2}\\b=\dfrac{3}{2}k=9\sqrt{2}\end{matrix}\right.\)
Trường hợp 2: \(k=-6\sqrt{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3}k=-10\sqrt{2}\\b=\dfrac{3}{2}k=-9\sqrt{2}\end{matrix}\right.\)