K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

cat tuong la ai khong nhan nua may nguoi nay

9 tháng 6 2016

\(1-\frac{1}{2+\frac{1}{3}}=1-\frac{1}{\frac{7}{3}}=1-\frac{3}{7}=\frac{4}{7}=\frac{1}{\frac{7}{4}}=\frac{1}{1+\frac{3}{4}}=\frac{1}{1+\frac{1}{\frac{4}{3}}}=\frac{1}{1+\frac{1}{1+\frac{1}{3}}}\)

Vậy, x = 1; y = 1; z = 3

14 tháng 11 2018

a, Ta có \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

(=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)

(=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)

(=) \(\left(b-a\right).\left(a-b\right)=ab\)

Vì a,b là 2 số dương

=> \(\hept{\begin{cases}ab>0\left(1\right)\\\left(b-a\right).\left(a-b\right)< 0\left(2\right)\end{cases}}\) 

Từ (1) và (2) => Không tồn tại hai số a,b để \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

14 tháng 11 2018

b, Cộng vế với vế của 3 đẳng thức ta có :

\(x+y+y+z+x+z=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)

(=) \(2.\left(x+y+z\right)=-\frac{5}{6}\)

(=) \(x+y+z=\frac{-5}{12}\)

Ta có : \(x+y+z=\frac{-5}{12}\left(=\right)-\frac{7}{6}+z=-\frac{5}{12}\left(=\right)z=\frac{3}{4}\)

Lại có \(x+y+z=\frac{-5}{12}\left(=\right)x+\frac{1}{4}=-\frac{5}{12}\left(=\right)x=-\frac{2}{3}\)

Lại có \(x+y+z=-\frac{5}{12}\left(=\right)y+\frac{1}{12}=-\frac{5}{12}\left(=\right)y=\frac{-1}{2}\)

9 tháng 7 2015

Bài 2 :       

Ta có :  x - y = xy   => x = xy + y = y ( x + 1 )

                             => x : y = x + 1 ( vì y khác 0 )

Ta có : x : y = x - y   => x + 1 = x - y  => y = -1

Thay y = -1 vào x - y = xy , ta được x - (-1) = x (-1)  => 2x = -1 => x = -1/2

Vậy x = -1/2   ;   y = -1

                                                  

12 tháng 6 2016

kgnskrlgjiojhpoht

6 tháng 11 2018

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

1 tháng 1 2020

(x^2-2+1/x^2 ) +( y^2-2+1/y^2) +(z^2-2+1/z^2) =0

=> (x-1/x)^2 +(y-1/y)^2+(z-1/z)^2=0

suy ra x-1/x=0 

          y-1/y=0

         z-1/z=0

.....

4 tháng 3 2020

Ta có: \(x^2+\frac{1}{x^2}\ge2\sqrt{x^2.\frac{1}{x^2}}=2\)

\(y^2+\frac{1}{y^2}\ge2\sqrt{y^2.\frac{1}{y^2}}=2\)

\(z^2+\frac{1}{z^2}\ge2\sqrt{x^2.\frac{1}{z^2}}=2\)

\(\Rightarrow VT\ge6\)

Dấu "=" khi \(\orbr{\begin{cases}x=y=z=1\\x=y=z=-1\end{cases}}\)

21 tháng 10 2020

d) Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

\(=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{x-2y+3z-6}{8}\)

\(=\frac{-10-6}{8}=\frac{-16}{8}=-2\)

\(\Rightarrow\hept{\begin{cases}x-1=-4\\y-2=-6\\z-3=-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)

Vậy \(x=-3\)\(y=-4\)\(z=-5\)

e) \(x\left(x+y+z\right)=-12\)\(y\left(y+z+x\right)=18\)\(z\left(z+x+y\right)=30\)

\(\Rightarrow x\left(x+y+z\right)+y\left(y+z+x\right)+z\left(z+x+y\right)=-12+18+30\)

\(\Leftrightarrow\left(x+y+z\right)^2=36\)\(\Leftrightarrow\orbr{\begin{cases}x+y+z=-6\\x+y+z=6\end{cases}}\)

TH1: Nếu \(x+y+z=-6\)\(\Rightarrow x=\frac{-12}{-6}=2\)\(y=\frac{18}{-6}=-3\)\(z=\frac{30}{-6}=-5\)

TH2: Nếu \(x+y+z=6\)\(\Rightarrow x=\frac{-12}{6}=-2\)\(y=\frac{18}{6}=3\)\(z=\frac{30}{6}=5\)

Vậy các cặp giá trị \(\left(x;y;z\right)\)thỏa mãn là \(\left(2;-3;-5\right)\)\(\left(-2;3;5\right)\)