K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

cho mk hỏi a^2-b^2+2^2 bằng bao nhiêu vậy

26 tháng 10 2017

bằng 180 nha bạn

15 tháng 10 2021

\(2a=3b\Rightarrow\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}\\ 5b=7c\Rightarrow\dfrac{b}{7}=\dfrac{c}{5}\Rightarrow\dfrac{b}{14}=\dfrac{c}{10}\\ \Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)

Áp dụng t/c dtsbn:

\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}=\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}=\dfrac{3a-7b+5c}{63-98+50}=\dfrac{-30}{15}=-2\\ \Rightarrow\left\{{}\begin{matrix}a=-42\\b=-28\\c=-20\end{matrix}\right.\)

15 tháng 10 2021

\(x:y:z=3:4:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)

Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\Rightarrow x=3k;y=4k;z=5k\)

\(2x^2+2y^2-3z^2=-100\\ \Rightarrow18k^2+32k^2-75k^2=-100\\ \Rightarrow-25k^2=-100\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=6;y=8;z=10\\x=-6;y=-8;z=-10\end{matrix}\right.\)

14 tháng 11 2018

Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)

Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)

Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)

=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)

Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)

Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)

=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)

Ta có tổng 3 phân số là \(\frac{213}{70}\)

=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)

(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)

(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)

(=) \(\frac{k}{h}=\frac{3}{7}\)

=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)

14 tháng 11 2018

bài 3

Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)

\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)

=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)

=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)

=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)

=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)

19 tháng 7 2018

ồ cuk dễ nhỉ

Nếu các bn thích thì ...........

cứ cho NTN này nhé !

 
15 tháng 7 2017

\(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{8}=\frac{b}{12}\)

\(\frac{b}{4}=\frac{c}{5}\Rightarrow\frac{b}{12}=\frac{c}{15}\) 

\(\Rightarrow\frac{a}{8}=\frac{b}{12}=\frac{c}{15}\) 

Áp dụng tính chất dãy tỉ số bằng nhau , ta đươc:

\(\frac{a}{8}=\frac{b}{12}=\frac{c}{15}=\frac{a+b-2c}{8+12-30}=\frac{10}{-10}=-1\) 

\(\Rightarrow a=-1.8=-8\) 

\(b=-1.12=-12\) 

\(c=-1.15=-15\)

15 tháng 7 2017

Tks bn nha! Mk tinh nham.

9 tháng 10 2015

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=>\frac{a^2}{4}=\frac{b^2}{9}=\frac{c^2}{16}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{c^2}{16}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)

=>\(a^2=4.4=16=>a=4,-4\)

Với a=4

=>\(\frac{4}{2}=\frac{b}{3}=\frac{c}{4}=2\)

=>b=2.3=6

=>c=2.4=8

Với a=-4

=>\(\frac{-4}{2}=\frac{b}{3}=\frac{c}{4}=-2\)

=>b=-2.3=-6

=>c=-2.4=-8

Vậy a=4,b=6,c=8

       a=-4,b=-6,c=-8

22 tháng 8 2017

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)

\(\Leftrightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)

\(\Rightarrow a=5;b=15;c=20\)

Theo bài ra , ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)\(a+2b-3c=-20\)

Áp dụng tính chất của dãy tỉ số bằng nhau vào biểu thức ,ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)\(\Rightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)

Từ trên \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=5\)

\(\Rightarrow\frac{a}{2}=5\Rightarrow a=10\)

\(\Rightarrow\frac{b}{3}=5\Rightarrow b=15\)

\(\Rightarrow\frac{c}{4}=5\Rightarrow c=20\)

Vậy \(a=10;b=15;c=20\)