Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không tồn tại a b c thỏa mãn đề
Do vế sau có ab*ac*7 = a^2*100*7 +... trong khi vế trước hàng trăm chỉ có a mà vế sau hàng trăm lên tới lớn hoặc bằng a^2*7 nên đăng thức không thể tòn tại
tick nha nếu đúng
2a=3b=>a/3=b/2=>a/6=b/4 (1)
3b=4c=>b/4=c/3 (2)
từ (1) và (2) => a/6=b/4=c/3
từ đó dùng tính chất dãy tỉ số = nhau là đc nha!
Gọi x là số cần tìm và a,b,c, thứ tự là các số của nó (x thuộc N*)
+ Nếu x chia hết cho 18 suy ra x chia hết cho 2 nên x chẵn
Ta có a,b,c, tỉ lệ với 1:2:3 thì nhân theo hệ quả ta được các số 123 ; 246 ; 369
mà x chia hết cho 9 suy ra x chia hết cho 3
Thỏa mãn các điều kiện trên ta được các số 396 và 936
Do x chia hết cho 18 suy ra x = 936
Vậy số cần tìm là 936.
\(2a=3b\Rightarrow\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}\\ 5b=7c\Rightarrow\dfrac{b}{7}=\dfrac{c}{5}\Rightarrow\dfrac{b}{14}=\dfrac{c}{10}\\ \Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}=\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}=\dfrac{3a-7b+5c}{63-98+50}=\dfrac{-30}{15}=-2\\ \Rightarrow\left\{{}\begin{matrix}a=-42\\b=-28\\c=-20\end{matrix}\right.\)
\(x:y:z=3:4:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\Rightarrow x=3k;y=4k;z=5k\)
\(2x^2+2y^2-3z^2=-100\\ \Rightarrow18k^2+32k^2-75k^2=-100\\ \Rightarrow-25k^2=-100\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=6;y=8;z=10\\x=-6;y=-8;z=-10\end{matrix}\right.\)
Giải : Xét phép trừ thứ nhất : Ở cột hàng trăm ta có a \(\ge\) c nên phép trừ ở hàng đơn vị và hàng chục có nhớ . Do đó ở cột hàng trăm :
a - c - 1 ( nhớ ) = 0 \(\Rightarrow\) c = a - 1 (1)
Xét phép trừ thứ hai : Ở cột hàng trăm ta có b > a nên phép trừ ở hàng chục có nhớ . Do đó ở cột hàng trăm :
b - a - 1 ( nhớ ) = 2 \(\Rightarrow\) a = b - 3 (2)
Từ (1) và (2) suy ra : c = b - 4 (3)
Từ (2) và (3) suy ra :
a + b + c = ( b - 3 ) + b + ( b - 4 ) = 3b - 7 \(\le\) 20.
Số không quá 20 và là tổng của bốn số chẵn liên tiếp có thể bằng :
0 + 2 + 4 + 6 = 12 hoặc 2 + 4 + 6 + 8 = 20.
Trường hợp 3b - 7 = 12 cho 3b = 19 , loại .
Trường hợp 3b - 7 = 20 cho 3b = 27 nên b = 9.
Từ đó : a = 9 - 3 = 6 ; c = 9 - 4 = 5.
Ta được :
695 - 596 = 99
965 - 695 = 270
Ta có {|2a−3b+500|2021≥0∀a;b(5a−6b)2020≥0∀a;b⇒|2a−3b+500|2021+(5a−6b)2020≥0∀a;b\hept{|2a−3b+500|2021≥0∀a;b(5a−6b)2020≥0∀a;b⇒|2a−3b+500|2021+(5a−6b)2020≥0∀a;b
Dấu "=" xảy ra <=>
{2a−3b=5005a−6b=0⇒{4a−6b=10005a−6b=0⇒{a=−1000b=−25003{2a−3b=5005a−6b=0⇒{4a−6b=10005a−6b=0⇒\hept{a=−1000b=−25003
Vậy a = -1000 ; b = -2500/3 là giá trị cần tìm
ab=-6 nên a=(-6)/b
Thay a=(-6)/b vào ac=-8 thì ta có (-6c/b)=-8 hay c/b=4/3
Mà bc=12 nên c=4 và b=3 còn a=-2
Vậy (a,b,c)=-2;3;4