Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta thấy : \(\left\{{}\begin{matrix}\left(2a+1\right)^2\ge0\\\left(b+3\right)^2\ge0\\\left(5c-6\right)^2\ge0\end{matrix}\right.\)\(\forall a,b,c\in R\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)
Mà \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\le0\)
Nên trường hợp chỉ xảy ra là : \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2=0\)
- Dấu " = " xảy ra \(\left\{{}\begin{matrix}2a+1=0\\b+3=0\\5c-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=-3\\c=\dfrac{6}{5}\end{matrix}\right.\)
Vậy ...
b,c,d tương tự câu a nha chỉ cần thay số vào là ra ;-;
a, Ta có: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\)<0
Vì (2a+1)2 >=0;(b+3)^4>=0;(5c-6)2 >=0
\(\Rightarrow\)Không tìm được a,b,c
a) Vì \(\left(2a+1\right)^2\ge0\left(\forall a\right)\)
\(\left(b+3\right)^4\ge0\left(\forall b\right)\)
\(\left(5c-6\right)^2\ge0\left(\forall c\right)\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^6\ge0\)
Mà ở đây, đề bài bảo: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^6\le0\)
=> Vô lí
=> Phương trình vô nghiệm
b;c Tương tự
Tìm các số a, b, c biết rằng :
1 . Ta có: \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}=\frac{a}{20}=\frac{2b}{9.2}=\frac{4c}{6.4}=\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)
Ap dụng tính chất dãy tỉ số bắng nhau ta dược :
\(\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)=\(\frac{a-2b+4c}{20-18+24}=\frac{13}{26}=\frac{1}{3}\)( do x+2b+4c=13)
Nên : a/20=1/3\(\Leftrightarrow\) a=1/3.20 \(\Leftrightarrow\)a=20/3
b/9=1/3 \(\Leftrightarrow\) b=1/3.9 \(\Leftrightarrow\) b=3
c/6=1/3 \(\Leftrightarrow\) c=1/3.6 \(\Leftrightarrow\) c= 2
Tìm a, b, c biết:
a) (2a+1)^2+(b+3)^4=0
b) (a-7)^2+(3b+2)^2+(4c-5)^6<0
Giúp mik với nhé!
Các bn hok tốt!
\(\left(2x+1\right)^2+\left(b+3\right)^4=0\)
Mà \(\left(2a+1\right)^2\ge0\forall x;\left(b+3\right)^4\ge0\forall b\)
\(\left(2a+1\right)^2+\left(b+3\right)^4=0\)chỉ khi: \(\hept{\begin{cases}\left(2a+1\right)^2=0\Rightarrow2a+1=0\Rightarrow a=\frac{-1}{2}\\\left(b+3\right)^4=0\Rightarrow b+3=0\Rightarrow b=-3\end{cases}}\)
\(\left(a-7\right)^2+\left(3b+2\right)^2+\left(4c-5\right)^6\le0\)
Xét: \(\left(a-7\right)^2+\left(3b+2\right)^2+\left(4c-5\right)^6< 0\)=> Vô lý
Xét: \(\left(a-7\right)^2+\left(3b+2\right)^2+\left(4c-5\right)^6=0\)
\(\Rightarrow\left(a-7\right)^2=0\Rightarrow a-7=0\Rightarrow a=7\)
\(\Rightarrow\left(3b+2\right)^2=0\Rightarrow3b+2=0\Rightarrow3b=-2\Rightarrow b=\frac{-2}{3}\)
\(\Rightarrow\left(4c-5\right)^6=0\Rightarrow4c-5=0\Rightarrow4c=5\Rightarrow c=\frac{5}{4}\)
a/ Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c};c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=k^3\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)
Áp dụng tính chất của tỉ lệ thức ta có:\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=k^3\)
Mặt khác: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\frac{a+b+c}{b+c+d}=k\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=k^3\)
\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(=k^3\right)\)