K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

\(F=\frac{x^2-1}{x^2}=1-\frac{1}{x^2}\)

Để F có gái trị nguyên thì \(1⋮x^2=>x^2=1=>x=\pm1\)

21 tháng 6 2016

bài 1:

\(\left(\frac{1}{2}-2\right).\left(\frac{1}{3}-x\right)>0\)

\(\Leftrightarrow\left(-\frac{3}{2}\right)\left(\frac{1}{3}-x\right)>0\)

Để biểu thức \(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương thì \(-\frac{3}{2}\)và \(\frac{1}{3}-x\)phải cùng âm

\(\Leftrightarrow\frac{1}{3}-x< 0\)

\(\Leftrightarrow x>\frac{1}{3}\)

Vậy \(x>\frac{1}{3}\)thì biểu thức\(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương

bài 2:

a)Để \(\frac{x^2-2}{5x}\) nhận giá trị âm thì x2-2<0 hoặc 5x<0

+)Nếu x2-2<0

=>x2<2

=>x<\(\sqrt{2}\)

+)Nếu 5x<0

=>x<0

Vậy x<\(\sqrt{2}\)hoặc x<0 thì biểu thức \(\frac{x^2-2}{5x}\)nhận giá trị âm

b)Để E nhận giá trị âm thì \(\frac{x-2}{x-6}\)nhận giá trị âm

=>x-2<0 hoặc x-6<0

+)Nếu x-2<0

=>x<2

+)Nếu x-6<0

=>x<6

Vậy x<2 hoặc x<6 thì biểu thức E nhận giá trị âm

23 tháng 7 2019

\(F=\frac{x^2-1}{x^2}=1-\frac{1}{x^2}\)

Để \(F< 0\)thì \(1-\frac{1}{x^2}< 0\Leftrightarrow\frac{1}{x^2}>1\Leftrightarrow1>x^2\Leftrightarrow x^2-1< 0\)

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)< 0\Leftrightarrow\hept{\begin{cases}x+1>0\\x-1< 0\end{cases}}\Leftrightarrow-1< x< 1\)và \(x\ne0\)

27 tháng 1 2020

\(F=\frac{x^2-1}{x^2}\)  

Để F đạt giá trị âm

\(\Rightarrow\hept{\begin{cases}x^2-1< 0\\x^2\ne0\end{cases}\Rightarrow\hept{\begin{cases}x^2< 1\\x^2\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}-1< x< 1\\x\ne0\end{cases}}}\)

  Vậy   \(-1< x< 1;x\ne0\)   thì C đạt giá trị âm

Bài 1: 

a: \(x^2+5x=x\left(x+5\right)\)

Để biểu thức này âm thì \(x\left(x+5\right)< 0\)

hay -5<x<0

b: \(3\left(2x+3\right)\left(3x-5\right)< 0\)

\(\Leftrightarrow-\dfrac{3}{2}< x< \dfrac{5}{3}\)

3 tháng 10 2021

còn bài 2 nữa ạ.

23 tháng 3 2022

a.\(16-x^2=0\)

\(\Leftrightarrow x^2=16\)

\(\Leftrightarrow x^2=4^2\)

\(\Leftrightarrow x=\pm4\)

b.\(\left(x+1\right)^2+\left(2y-3\right)^{10}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\\left(2y-3\right)^{10}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2y-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{2}\end{matrix}\right.\)

11 tháng 8 2016

\(A=x^2+4x< 0\)

\(=>x^2< -4x\)

\(=>x< -4\)

\(\left(x-3\right)\left(x+7\right)< 0\)

\(=>x-3< 0< x+7\)hoặc \(x+7< 0< x-3\)

\(=>-7< x< 3\)

\(x^2+4x< 0\)

\(\Rightarrow x\left(x+4\right)< 0\)

Th1 : \(\hept{\begin{cases}x>0\\x+4< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< -4\end{cases}}}\)

Th2 : \(\hept{\begin{cases}x< 0\\x+4>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x>-4\end{cases}}}\)

Những câu còn lại tương tự thôi

16 tháng 9 2020

\(x^2-\frac{1}{5}x< 0\) 

\(x\left(x-\frac{1}{5}\right)< 0\) 

TH 1 : 

\(\hept{\begin{cases}x>0\\x-\frac{1}{5}< 0\end{cases}}\) 

\(\hept{\begin{cases}x>0\\x< \frac{1}{5}\end{cases}}\)  \(\Rightarrow0< x< \frac{1}{5}\) 

TH 2 : 

\(\hept{\begin{cases}x< 0\\x-\frac{1}{5}>0\end{cases}}\) 

\(\hept{\begin{cases}x< 0\\x>\frac{1}{5}\end{cases}}\) \(\Rightarrow x=\varnothing\)

Vậy \(0< x< \frac{1}{5}\) là nghiệm của bất phương trình trên 

16 tháng 9 2020

                                                                Bài giải

\(x^2-\frac{1}{5}\cdot x=x\left(x-\frac{1}{5}\right)< 0\)khi \(x\) và \(x-\frac{1}{5}\) đối nhau. Mà \(x>x-\frac{1}{5}\) nên :

\(\hept{\begin{cases}x>0\\x-\frac{1}{5}< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>0\\x< \frac{1}{5}\end{cases}}\Rightarrow\text{ }0< x< \frac{1}{5}\)