Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x,y\ne0\)
\(pt\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{3}{2}\)
Do vai trò của x,y như nhau, không mất tính tổng quát, giả sử: \(x\ge y\)
\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\Rightarrow\frac{3}{2}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)
\(\Rightarrow3y\le4\Rightarrow y=1\)(vì \(y\inℕ^∗\))
Lúc đó thì \(1+\frac{1}{x}=\frac{3}{2}\Rightarrow\frac{1}{x}=\frac{1}{2}\Rightarrow x=2\)(tm)
Vậy có hai cặp số tự nhiên (x;y) thỏa mãn \(\left(1;2\right);\left(2;1\right)\)
BĐT Cauchy-Schwarz:
\(\left(1+1+1+...+1\right)\left(x^2_1+x^2_2+...+x^2_{2017}\right)\ge\left(x_1+x_2+...+x_{2017}\right)^2\left(\text{2017 số 1}\right)\)
\(\Leftrightarrow2017\left(x^2_1+x^2_2+...+x^2_{2017}\right)\ge\left(x_1+x_2+...+x_{2017}\right)^2\)
\(\Leftrightarrow x^2_1+x^2_2+...+x^2_{2017}\ge\dfrac{\left(x_1+x_2+...+x_{2017}\right)^2}{2017}\)
Khi \(\dfrac{x_1}{1}=\dfrac{x_2}{1}=...=\dfrac{x_{2017}}{1}\Leftrightarrow x_1=x_2=...=x_{2017}\)
Bạn j j biết làm bài ơi, giải hộ với. Bạn chưa biết làm thì nghĩ hộ t với. Làm được tớ cho mấy cái kẹo mút này...
Gọi i là đại diện cho các số từ 1 đến 2011
ĐKXĐ: \(a_i\ne0\left(i=1,2,3,..,2011\right)\)
Xét \(a_i=1\) Ta có: \(\frac{1}{a^{11}_i}=1>\frac{2011}{2048}\Rightarrow\frac{1}{x^{11}_1}+\frac{1}{x^{11}_2}+...+\frac{1}{x^{11}_{2011}}>\frac{2011}{2048}\left(loai\right)\)
Xét \(a_i\ge2\) Ta có: \(\frac{1}{a^{11}_i}\le\frac{1}{2048}\Rightarrow\frac{1}{x^{11}_1}+\frac{1}{x^{11}_2}+...+\frac{1}{x^{11}_{2011}}\le\frac{2011}{2048}\)
Dấu "=" xảy ra khi \(a_i=2\)
Thay vào ta có:
\(M=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\)
\(\Rightarrow2M-M=\left(1+\frac{1}{2}+...+\frac{1}{2^{2010}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)\)
\(\Rightarrow M=1-\frac{1}{2^{2011}}\)