K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

Chọn D

.

Đặt với , , .

Capture

 

Vậy .

1 tháng 1 2020

3 tháng 4 2019

14 tháng 12 2019

 Đáp án B

Phương pháp:

Hàm số y = f(x) nghịch biến trên (-∞;+∞) khi và chỉ khi f'(x) ≤ 0, ∀ x ∈ (-∞;+∞), f'(x) = 0 tại hữu hạn điểm.

Cách giải:

Đề thi Học kì 1 Toán 12 có đáp án (Đề 1)

Hàm số đã cho nghịch biến trên khoảng (-∞;+∞)

19 tháng 11 2018

Chọn D.

Tập xác định: D =  ℝ

Ta có

Xét m = 1, ta có y' = -3 < 0 ∀ x ∈ ℝ  nên nghịch biến trên tập xác định.

Xét m ≠ 1 Để hàm số trên nghịch biến trên tập xác định khi và chỉ khi 

Vậy với  - 2 7 ≤ m ≤ 1 thì hàm số y =  ( m - 1 ) x 3 + ( m - 1 ) x 2 - ( 2 m + 1 ) + 5  nghịch biến trên tập xác định.

y'= \(4x^3-4\left(m-1\right)x\)

Để hàm số đồng biến trên khoảng (1;3) thì \(y'\left(x\right)\ge0,\forall x\in\left(1;3\right)\)

\(\Leftrightarrow x^2-\left(m-1\right)\ge0,\forall x\in\left(1;3\right)\)

\(\Leftrightarrow m-1\le x^2,\forall x\in\left(1;3\right)\)

\(\Rightarrow m-1\le1\Leftrightarrow m\le2\)

Vậy \(m\in\) (−\(\infty\);2]

26 tháng 7 2019

Đáp án A

8 tháng 10 2017

Ta có y ' = - 3 x 2 + 6 x + 3 m . Hàm số nghịch biến trên khoảng (0; +∞) nếu y' ≤ 0 trên khoảng (o; +∞)

Cách 1: Dùng định lí dấu tam thức bậc hai.

Xét phương trình - 3 x 2 + 6 x + 3 m . Ta có Δ' = 9(1 + m)

TH1: Δ' ≤ 0 => m ≤ -1 khi đó, - 3 x 2 + 6 x + 3 m < 0 nên hàm số nghịch biến trên R .

TH2: Δ' > 0 => m > -1; y' = 0 có hai nghiệm phân biệt là x = 1 ±√(1+m) .

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hàm số nghịch biến trên (0; +∞) <=> 1 + √(1+m) ≤ 0, vô lí.

Từ TH1 và TH2, ta có m ≤ -1

Cách 2: Dùng phương pháp biến thiên hàm số.

Ta có y '   =   - 3 x 2   +   6 x   +   3 m   ≤   0 , ∀x > 0 <=>   3 m   ≤   3 x 2   -   6 x , ∀x > 0

Từ đó suy ra 3 m   ≤   m i n ( 3 x 2   -   6 x ) với x > 0

Mà  3 x 2 - 6 x = 3 ( x 2 - 2 x + 1 ) - 3 = 3 ( x - 1 ) 2 - 3 ≥ - 3 ∀ x

Suy ra: m i n (   3 x 2   –   6 x )   =   -   3 khi x= 1

Do đó 3m ≤ -3 hay m ≤ -1.

Chọn đáp án C.