Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
a, - Xét phương trình hoành độ giao điểm :\(x^2=\left(m-2\right)x-m+3\)
\(\Leftrightarrow x^2-\left(m-2\right)x+m-3=0\left(I\right)\)
Có \(\Delta=b^2-4ac=\left(m-2\right)^2-4\left(m-3\right)\)
\(=m^2-4m+4-4m+12=m^2-8m+16=\left(m-4\right)^2\)
- Để P cắt d tại 2 điểm phân biệt <=> PT ( I ) có 2 nghiệm phân biệt .
<=> \(\Delta>0\)
\(\Leftrightarrow\left(m-4\right)^2>0\)
\(\Leftrightarrow m\ne4\)
Vậy ...
b, Hình như đề thiếu giá trị của cạnh huỳnh hay sao á :vvvv
a) Phương trình hoành độ giao điểm là:
\(x^2=\left(m-2\right)x-m+3\)
\(\Leftrightarrow x^2-\left(m-2\right)x+m-3=0\)
\(\Delta=\left(m-2\right)^2-4\cdot\left(m-3\right)=m^2-4m+4-4m+12=m^2-8m+16\)
Để (d) cắt (P) tại hai điểm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow m^2-8m+16>0\)
\(\Leftrightarrow\left(m-4\right)^2>0\)
mà \(\left(m-4\right)^2\ge0\forall m\)
nên \(m-4\ne0\)
hay \(m\ne4\)
Vậy: khi \(m\ne4\) thì (d) cắt (P) tại hai điểm phân biệt
a, - Ta có : Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 6 .
\(\Rightarrow-\dfrac{b}{a}=-\dfrac{3}{a}=6\)
\(\Rightarrow a=-\dfrac{1}{2}\)
b, - Xét phương trình hoành độ giao điểm :\(3x+2=\left(2m-1\right)x+8\)
\(\Leftrightarrow3x+2=2mx-x+8\)
\(\Leftrightarrow3x+2-2mx+m-8=0\)
\(\Leftrightarrow x\left(3-2m\right)=6-m\)
- Để hai đường thẳng cắt được nhau thì : \(3-2m\ne0\)
\(\Leftrightarrow m\ne\dfrac{3}{2}\)
Vậy ...
a) Vì đồ thị hàm số y=ax+3 cắt trục hoành tại điểm có hoành độ bằng 6 nên
Thay x=6 và y=0 vào hàm số y=ax+3, ta được:
\(6a+3=0\)
\(\Leftrightarrow6a=-3\)
hay \(a=-\dfrac{1}{2}\)
Vậy: \(a=-\dfrac{1}{2}\)
b)
Để hàm số y=(2m-1)x+8 là hàm số bậc nhất thì \(2m-1\ne0\)
\(\Leftrightarrow2m\ne1\)
hay \(m\ne\dfrac{1}{2}\)(1)
Để (d) cắt (d') thì \(2m-1\ne3\)
\(\Leftrightarrow2m\ne4\)
hay \(m\ne2\)(2)
Từ (1) và (2) suy ra \(m\notin\left\{\dfrac{1}{2};2\right\}\)
a: Thay x=-2 và y=-2 vào (d1), ta đc:
-2(2m+1)+m-3=-2
=>-4m-2+m-3=-2
=>-3m-5=-2
=>-3m=3
=>m=-1
b: Tọa độ giao của (d2) với trục hoành là:
y=0 và (2a+1)x+4a-3=0
=>x=-4a+3/2a+1
Để x nguyên thì -4a-2+5 chia hết cho 2a+1
=>\(2a+1\in\left\{1;-1;5;-5\right\}\)
=>\(a\in\left\{0;-1;2;-3\right\}\)
Đáp án C