Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab + bc + ca = abc
10a + b + 10b + c + 10c + a = 100a + 10b + c
11a + 11b + 11c = 100a + 10b + c
b + 10c = 89a
=> Vì b + 10c không thể là một số có 3 chữ số nên a = 1
b + 10c = 89 . 1
=> c = 8, vì nếu c = 7 thì b + 10 . 7 < 89
b + 10 . 8 = 89
b + 80 = 89
=> b = 89 - 80
=> b = 9
Thay các chữ số a, b, c thì ta được:
19 + 98 + 81 = 198 (thỏa mãn)
Vậy các chữ số a,b, c lần lượt là 1 ; 9 ; 8
Ta có: abc < ab+bc+ca
\(\Rightarrow\frac{ab+bc+ca}{abc}>\frac{abc}{abc}\)
\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ca}{abc}>1\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>1\)
Vì a,b,c có vai trò như nhau . Nếu giả sử a>b>c
\(\Rightarrow\frac{1}{a}< \frac{1}{b}< \frac{1}{c}\Rightarrow1< \frac{1}{c}+\frac{1}{a}+\frac{1}{b}< \frac{3}{c}\)
\(\Rightarrow1< \frac{3}{c}\)
\(\Rightarrow c>3\) mà c là SNT \(\Rightarrow c=2\left(1\right)\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}>1-\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow b>2\). Giả sử b > 3
\(\frac{1}{b}< \frac{1}{3}\left(2\right)\)mà \(\frac{1}{a}< \frac{1}{b}\)
\(\Rightarrow\frac{1}{a}< \frac{1}{3}\)
Kết hợp (2) \(\Rightarrow\frac{1}{a}+\frac{1}{b}< \frac{1}{3}+\frac{1}{3}=\frac{2}{3}\)mà \(\frac{2}{3}>\frac{1}{2}\)
\(\Rightarrow\) giả sử sai
\(\Rightarrow b< 3\)mà \(b\ne c\Rightarrow b\ne2\)và b là SNT
\(\Rightarrow b=3\left(3\right)\)
\(\Rightarrow\frac{1}{a}>\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(\Rightarrow a< 6\)mà \(a>b;b=3;b\ne a\)
\(\Rightarrow3< a< 6\)mà a là SNT
\(\Rightarrow a=5\left(4\right)\)
Mà a,b,c vai trò như nhau
Kết hợp (1) , (3) , (4) \(\Rightarrow\left(a,b,c\right)\in\left\{\left(2,3,5\right);\left(5,3,2\right);\left(3,2,5\right);\left(5,2,3\right);\left(2,5,3\right);\left(3,5,2\right)\right\}\)( tm điều kiện )
Mn tham khảo nhé
Do a, b, c là các số nguyên tố nên a, b, c ∈ {2;3;5;7}.
Nếu trong ba số a, b, c có cả 2 và 5 thì abc ⋮ 10 nên c = 0 loại
Vậy a, b, c ∈ {2;3;7} hoặc {3;5;7}
Trường hợp a, b, c ∈ {2;3;7} ta có: abc ⋮ 2 nên c = 2
Xét các số 372 và 732, chúng đều không chia hết cho 7.
Trường hợp a, b, c ∈ {3;5;7}: Vì a + b + c = 12 nên abc ⋮ 3. Để abc ⋮ 5, ta chọn c = 5.
Xét các số 375 và 735, chỉ có 735 ⋮ 7.
Vậy số phải tìm là 735.
Số đó là: 735
Giải thích:
Vì: 735 có tận cùng là 5 => chia hết cho 5
735 có tổng các chữ số là 15 => chia hết cho 3
735:7=105=> chia hết cho 7
a) Ta có :
\(\overline{ab}=3ab\)
\(\Leftrightarrow\)\(10a+b=3ab\)
\(\Leftrightarrow\)\(b=3ab-10a=a.\left(3b-10\right)\)
Ta thấy \(b=a.\left(3b-10\right)\)\(\Rightarrow\)\(b⋮a\)
b) Ta có :
\(10a+b=3ab\)
\(\Leftrightarrow\)\(10a+ak=3ka^2\)
\(\Leftrightarrow\)\(a.\left(10+k\right)=3ka^2\)
\(\Leftrightarrow\)\(10+k=3ak\)
\(\Leftrightarrow\)\(10=3ak-k\)
\(\Leftrightarrow\)\(10=k.\left(3a-1\right)\)
Vì \(10=k.\left(3a-1\right)\)nên \(k\inƯ\left(10\right)\)
Bài 1: Gọi hai số cần tìm là a và b.
Do tích ab là số nguyên tố nên một trong hai số là số 1. Số còn lại là một số nguyên tố. Coi b = 1 và a là số nguyên tố.
Khi đó tổng của hai số là a + 1.
Để a và a + 1 đều là số nguyên tố thì a = 1. Vậy hai số cần tìm là 1 và 2.
Bài 2: Ta có:
\(\overline{ab}.\overline{cd}=\overline{ddd}\Leftrightarrow\overline{ab}.\overline{cd}=d.111=d.3.37\)
Do 37 là số nguyên tố nên hoặc ab hoặc cd phải chia hết cho 37. Ta giả sử đó là ab
Do ab là số có hai chữ số nên ab = 37 hoặc 74
TH1: \(\overline{ab}=37\Rightarrow37.\overline{cd}=d.3.37\Rightarrow\overline{cd}=3d\)
\(\Rightarrow10c=2d\Rightarrow5c=d\Rightarrow c=1;d=5\)
Ta có 37.15 = 555
TH2: \(\overline{ab}=74\Rightarrow74.\overline{cd}=d.3.37\Rightarrow2.\overline{cd}=3d\)
\(\Rightarrow20c=d\) (Loại)
Vậy ta có phép tính: 37.15 = 555